The ovarian hormone 17β-estradiol (E2) confers cardioprotection via upregulating cardiac circadian rhythm period 2 (Per2) and is associated cardioprotective microRNA (miRNAs). However, whether Per2-mediated downregulation of ferroptosis-induced oxidative stress and injury in noncardiac tissues extends to the heart remains unknown. Therefore, studying the interplay between E2 and cardiac ferroptosis will have important ramifications for female cardiovascular health. We hypothesized that Per2-mediated suppression of cardiac ferroptosis contributes to E2-dependent cardioprotection while E2 deficiency promotes ferroptosis and cardiac dysfunction in female rats. The study used Sprague-Dawley rats with sham operation (sham), bilateral ovariectomy (E2-deficient) followed by E2 or vehicle treatment for 8 weeks. Cardiovascular function was assessed via radiotelemetry and echocardiography, with ex vivo analyses of ferroptosis markers, Per2, and associated miRNAs in heart tissues. E2-replete (sham and ovariectomy + E2) rats showed lower body weight gain, heart weight/body weight ratio, fat mass, and blood pressure compared with E2-deficient rats. Echocardiography data revealed reduced contractility indices in E2-deficient rats, which were restored to sham levels with E2 treatment. Molecular analyses revealed that E2-treated E2-deficient rats had upregulated Per2, cardioprotective miRNAs (499, 192, 194, and 144), and improved redox balance, along with decreased cardiodetrimental miRNAs (652 and 208b) and reactive oxygen species. In E2-deficient rats, glutathione depletion led to reduced glutathione peroxidase-4, iron overload from heme oxygenase-1 upregulation, and increased lipid peroxidation. This study highlights possible contribution of Per2-mediated inhibition of ferroptosis to E2-mediated cardioprotection in females, offering new insights for women's heart health. SIGNIFICANCE STATEMENT: This study describes the contribution of estrogen-mediated upregulation of cardiac circadian clock protein Per2 to the inhibition of ferroptosis and the improvement of cardiac function. The findings offer new perspective for understanding the intersection between hormonal regulation, circadian clock protein, microRNA, and ferroptosis in cardiovascular health. The research adds new knowledge on female molecular cardiology, particularly those related to ferroptosis. This perspective broadens current understanding of the complex molecular underpinnings of female heart health in presence or absence of estrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpet.2024.103385 | DOI Listing |
J Pharmacol Exp Ther
February 2025
Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina. Electronic address:
The ovarian hormone 17β-estradiol (E2) confers cardioprotection via upregulating cardiac circadian rhythm period 2 (Per2) and is associated cardioprotective microRNA (miRNAs). However, whether Per2-mediated downregulation of ferroptosis-induced oxidative stress and injury in noncardiac tissues extends to the heart remains unknown. Therefore, studying the interplay between E2 and cardiac ferroptosis will have important ramifications for female cardiovascular health.
View Article and Find Full Text PDFMol Neurobiol
May 2022
Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats.
View Article and Find Full Text PDFMol Cell Endocrinol
March 2021
Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Electronic address:
Considering that post-menopausal women and ovariectomized rodents develop obesity associated with increased visceral fat, this study was developed to investigate if liraglutide, a glucagon-like peptide 1 (GLP1) analogue, could improve the metabolism of estrogen (E2) deficient females. Wistar rats were ovariectomized (OVX), and subdivided in four groups: sham saline, sham liraglutide, OVX saline, and OVX liraglutide. After sixty days, metabolic parameters of blood, heart, liver, brown (BAT) and white adipose tissue (WAT) visceral depots, and, heart oxidative homeostasis, were evaluated.
View Article and Find Full Text PDFAdipocyte
April 2017
a Department of Human Health and Nutritional Sciences , University of Guelph, Guelph , Ontario , Canada.
The mechanisms by which estradiol modulates adipose lipolysis are poorly understood. We sought to measure basal and β-stimulated indices of lipoysis (FFAs, glycerol) in vivo in E2 deficient or supplemented rats, and ex vivo with direct acute E2 exposure. For 2 weeks, ovariectomized (OVX) and OVX rats treated with a daily oral dose of E2 (OVX E2) were pairfed to SHAM controls (n = 12 per group).
View Article and Find Full Text PDFExp Physiol
May 2008
Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC, USA.
17beta-Oestradiol (E2)-mediated inhibition of angiotensin-converting enzyme (ACE) protects the E2-replete kidney from the progression of hypertensive renal disease. Angiotensin-converting enzyme 2 (ACE2), a homologue of ACE, counters the actions of ACE by catalysing the conversion of angiotensin II (Ang II) to angiotensin(1-7) [Ang(1-7)]. We investigated E2 regulation of ACE2 in the renal wrap (RW) model of hypertension in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!