Drug Metab Dispos
Drug Metabolism & Pharmacokinetics, Genentech, Inc, South San Francisco, California. Electronic address:
Published: February 2025
Targeted covalent inhibitor (TCI) represents a noncanonical class of small molecules that function via "inactivating" the target protein through the formation of drug-protein adducts. The electrophilic groups (warheads) embedded in the TCIs are essential for their activity while also being recognized as sites susceptible to metabolism by various enzymes and endogenous nucleophiles. Given the growing knowledge of gut microbiome-mediated drug metabolism and its impact on drug absorption, distribution, metabolism, and excretion, the fate of the reactive warhead-containing TCIs in the gut warrants further understanding. In this study, we selected unsubstituted terminal acrylamides (ibrutinib, sotorasib, and divarasib), β-substituted acrylamides (afatinib, neratinib, and dacomitinib), an α-substituted acrylamide (adagrasib), an alkynamide (acalabrutinib), and a salicylaldehyde (voxelotor) to investigate. An anaerobic in vitro approach was utilized using both fecal slurry and feces-outgrown bacteria from rats, mice, and humans. The results showed that double bond reduction was the major metabolism captured for terminal acrylamides, but the activity decreases significantly when α or β substitutions are present; acalabrutinib was stable; and voxelotor was efficiently reduced to a benzyl alcohol metabolite. Synthesized TCI-GSH adducts can be efficiently hydrolyzed sequentially to cysteine adducts, which are rather stable from further microbiome modifications. There were no apparent species differences between rats, mice, and humans qualitatively, while the reductase activity observed was generally higher in the human gut microbiome. This study provides insights into both enzymatic and nonenzymatic reactions of TCIs and their thiol conjugates in the gut environment, which can be translated to the understanding of their absorption, distribution, metabolism, and excretion behavior during drug development. SIGNIFICANCE STATEMENT: Understanding the gut microbiome metabolism of targeted covalent inhibitors and their thiol conjugates will help interpret absorption, distribution, metabolism, and excretion studies for new targeted covalent inhibitors in delineating that from human metabolism, predicting clearance pathways, and assessing the impact on absorption/reabsorption. The species difference information can inform proper preclinical species for better human translation in overall drug behavior. The experimental conditions developed from this work can also be adapted to study gut microbiome metabolism in general across different species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dmd.2024.100027 | DOI Listing |
Sci Adv
March 2025
Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.
View Article and Find Full Text PDFChemistry
March 2025
Shanghai Institute of Materia Medica Chinese Academy of Sciences, Department of Molecular Pharmacology, 555 Zuchiongzhi Road, 201203, Shanghai, CHINA.
Sortase A (SrtA), a cysteine transpeptidase critical for surface protein anchoring in Gram-positive pathogens, represents an attractive antivirulence target. While covalent SrtA inhibitors show therapeutic potential, existing compounds lack species selectivity. Through structure-guided design, we developed T10, a covalent inhibitor selectively targeting Streptococcus pyogenes SrtA (SpSrtA) over Staphylococcus aureus SrtA (SaSrtA).
View Article and Find Full Text PDFRSC Med Chem
February 2025
Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
Protein-protein interactions (PPIs) are key regulators of various cellular processes. Modulating PPIs with small molecules has gained increasing attention in drug discovery, particularly targeting the 14-3-3 protein family, which interacts with several hundred client proteins and plays a central role in cellular networks. However, targeting a specific PPI of the hub protein 14-3-3, with its plethora of potential client proteins, poses a significant selectivity challenge.
View Article and Find Full Text PDFChem Biol Drug Des
March 2025
Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India.
Malaria is a pervasive and deadly threat to the global population, and the resources available to treat this disease are limited. There is widespread clinical resistance to the most commonly prescribed antimalarial drugs. To address this issue, we synthesized a range of 4'-pyrrolidinodiazenyl chalcones using a covalent bitherapy approach to study their potential antimalarial properties.
View Article and Find Full Text PDFJ Mater Chem B
March 2025
Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
Synthetic systems have co-opted urease, a crucial enzyme serving many biological functions, to recapitulate complex biological features. Therefore, the urease-urea feedback reaction network (FCRN) is reciprocated with soft materials to induce various animate-like features, including self-regulation, error correction, and decision-making capabilities, that are processed through a variety of non-linear functions. Although free-urease-based homogeneous systems are capable of adhering to many non-linear characteristics, they lack the ability to showcase the diffusion-controlled spatiotemporal phenomena.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.