A brief history of nerve action potentials after 1600.

Mol Pharmacol

Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, Washington. Electronic address:

Published: February 2025

Action potentials of individual nerve axons are the electrical signals that propagate nervous information quickly around the brain and the body. This essay discusses milestones, from the definition of electricity in 1600 to the recent elucidation of the molecular structures of ion channels and membrane proteins that underlie action potential initiation and propagation. There were several key steps. The theory of electricity and electromagnetism had to be developed enough to allow discovery and measurement of animal electricity by biophysically minded physiologists. The theory of ions and electrochemistry had to be developed enough to allow prediction and verification of an ionic basis for animal electricity. Methods to amplify electrical signals with vacuum tubes and transistors were required for quantitative measurement and display of the action potentials and currents. Physiologists had to move from extracellular recording using nerve trunks to intracellular recording using single nerve fibers. Electronic feedback and mathematical modeling were needed to recognize the conductance changes of nerve membranes during activity. Pharmacology with neurotoxins allowed recognition of underlying voltage-gated ion channels. Protein purification, cloning, and sequencing identified the molecular basis of ion channels, and atomic structures showed in graphic detail how they work. SIGNIFICANCE STATEMENT: This is a brief scientific history of the action potential, the quintessential electrical message of our nerves. As with other histories in biology, this one reiterates that major scientific advances depend on advances in physics and physical chemistry, development of the right preparations and instruments, and the experimental genius and conceptual insights of clever scientists and their students.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molpha.2024.100012DOI Listing

Publication Analysis

Top Keywords

action potentials
12
ion channels
12
electrical signals
8
action potential
8
developed allow
8
animal electricity
8
action
5
history nerve
4
nerve action
4
potentials 1600
4

Similar Publications

Introduction Evoked compound action potentials (ECAPs) during spinal cord stimulation (SCS) may be useful in the treatment of chronic pain as a control signal for closed-loop neuromodulation. However, considerable inter-individual variability in evoked responses requires robust methods in order to realize effective, personalized pain management. These methods include artifact removal, feature extraction, classification, and prediction.

View Article and Find Full Text PDF

The physics of defect chemistry and the chemistry of defect physics.

Phys Chem Chem Phys

March 2025

Technical University of Darmstadt, Electronic Structure of Materials, Darmstadt, Germany.

Defect chemistry is the classical approach to evaluate point-defect concentrations in solids depending on the chemical activity of the ( - 1) of constituents by evaluating the mass action laws of a number of defect reactions conserving species, lattice sites, and charge. In an alternative approach, formation energies of individual defects can be calculated to determine the dependence on the Fermi level and on the chemical potentials of the reservoirs. This contribution provides the quantitative relationship between the two approaches, offering the opportunity to compare calculated defect formation energies with experimentally determined quantities.

View Article and Find Full Text PDF

Grid and place cells typically fire at progressively earlier phases within each cycle of the theta rhythm as rodents run across their firing fields, a phenomenon known as theta phase precession. Here, we report theta phase precession relative to turning angle in theta-modulated head direction cells within the anteroventral thalamic nucleus (AVN). As rodents turn their heads, these cells fire at progressively earlier phases as head direction sweeps over their preferred tuning direction.

View Article and Find Full Text PDF

Phosphodiesterase inhibitors regulate intracellular Ca of cardiomyocytes through enhancing second messenger signalling. This study aimed to investigate whether TP-10, a selective phosphodiesterase10A inhibitor, modulates Ca cycling, attenuating arrhythmogenesis in the right ventricular outflow tract (RVOT). Right ventricular tissues from New Zealand white rabbits were harvested, and electromechanical analyses of ventricular tissues were conducted.

View Article and Find Full Text PDF

Dual action of sphingosine 1-phosphate pathway in in vitro models of global cerebral ischemia.

Neurobiol Dis

March 2025

Dept. of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy. Electronic address:

It is well accepted that sphingolipids play an important role in the pathological process of cerebral ischemia. In the present study we have investigated the involvement of sphingosine 1-phosphate (S1P) pathway in two different in vitro models of global ischemia. In organotypic hippocampal slices exposed to oxygen and glucose deprivation (OGD) we evaluated the mRNA expression of S1P metabolic enzymes and receptors (S1P) by Real Time-PCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!