Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mito.2025.102022 | DOI Listing |
Adv Biol (Weinh)
March 2025
Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany.
Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease.
View Article and Find Full Text PDFHeliyon
February 2025
Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh.
Budding yeast, is an ideal model organism for genetic research due to its similarity in life cycle and cellular structure to higher eukaryotes as well as its ease of cultivation and manipulation in the laboratory. Yeast cells benefit from being cultured in calorie-restricted media, which can be achieved by reducing glucose concentration from 2 % to 0.5 %.
View Article and Find Full Text PDFJ Cell Mol Med
March 2025
Physical Examination Center, Xi'an International Medical Center Hospital, Xi'an, China.
Bone marrow mesenchymal stem cells (BM-MSCs) have promising prospects in bone repair and regenerative medicine. However, BM-MSCs gradually lose their original pluripotency and differentiation potential after successive passages. This study aimed to reveal the mechanism underlying the phenomenon.
View Article and Find Full Text PDFReprod Biomed Online
October 2024
State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.. Electronic address:
Research Question: Does putrescine (PUT) improve oocytes from reproductively old mice by promoting mitochondrial autophagy?
Design: Germinal vesicle stage cumulus-oocyte complexes (COCs) were obtained from 9-month old female C57BL/6N mice and divided into control, PUT and difluoromethylornithine, inhibitor (DFMO) groups. These germinal vesicle COCs underwent mouse in-vitro maturation (IVM) culture to observe the extrusion of the first polar body in each group. Using JC-1, dichloro-dihydro-fluorescein diacetate fluorescent probes and a confocal microscope, the mitochondrial membrane potential integrity and reactive oxygen species levels were measured in metaphase II stage oocytes.
Menopause
March 2025
Department of Radiology, Weill Cornell Medicine, New York, NY.
Objective: This study aimed to investigate neurophysiological correlates of subjective cognitive decline (SCD) among midlife women at risk for Alzheimer's disease (AD).
Methods: We examined 156 cognitively normal perimenopausal and postmenopausal women aged 40 to 65 years, with an AD family history and/or apolipoprotein E epsilon 4 genotype, who were not on menopause hormone therapy. Participants underwent neuropsychological testing, health and menopausal symptom questionnaires, and brain volumetric magnetic resonance imaging, arterial spin labeling-magnetic resonance (MR) measuring cerebral blood flow, and 31phosphorus magnetic resonance spectroscopy (31P-MRS) measuring mitochondria high-energy phosphates (adenosine triphosphate [ATP], phosphocreatine [PCr], inorganic phosphate [Pi]).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!