Septin AoCDC11 is involved in trap morphogenesis, conidiation, and vegetative growth in carnivorous Arthrobotrys oligospora.

Fungal Genet Biol

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: March 2025

Septins, a conserved family of cytoskeletal proteins with GTP-binding domains, play key roles in cell polarity, morphogenesis, cytoskeleton organization, and membrane remodeling. The nematode-trapping fungus Arthrobotrys oligospora can capture and kill nematodes using adhesive networks. It has been highlighted the importance of cell polarity, actin organization, and membrane remodeling in the process of trap formation, but the role of septins in adhesive-network forming remains unclear. In this study, we investigated the functions of AoCDC11, an ortholog of Saccharomyces cerevisiae CDC11, through gene disruption and multiphenotypic analysis. Disruption of AoCDC11 led to reduced trap production and abnormal trap morphology. Compared to the wild type, ΔAoCDC11 mutants significantly reduced trap formation to emerge more vegetative hyphae and produced more incompletely fused adhesive networks (45 % vs. 10 %) by fewer trap loops and septa. Additionally, ΔAoCDC11 mutants exhibited a 36 % reduction in hyphal growth and 88 % decrease in conidiation compared to the wild type. Transcriptomic analysis revealed that AoCDC11 regulated genes involved in trap development, including those related to the cell cycle, anatomical structure development, cellular morphogenesis, vesicle transport, and membrane trafficking. These findings suggest that AoCDC11 plays a crucial role in trap morphogenesis, vegetative growth, and conidiation by modulating multiple biological processes. This study expands our understanding of the functions of septins in morphogenesis and survival strategy of nematode-trapping fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2025.103971DOI Listing

Publication Analysis

Top Keywords

trap
8
involved trap
8
trap morphogenesis
8
vegetative growth
8
arthrobotrys oligospora
8
cell polarity
8
organization membrane
8
membrane remodeling
8
adhesive networks
8
trap formation
8

Similar Publications

In situ global mapping of protein perturbations via protein abundance and conformation analysis.

Anal Chim Acta

May 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:

Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis and associated with high rates of disability and systemic damage. Jianpi Qingre Tongluo prescription (Huangqin Qingre Chubi Capsule, HQC), an herbal formula with abundant clinical applications, has played a definite role in both clinical and experimental studies of RA. However, the specific mechanisms by which HQC relieves inflammation in RA have not been fully elucidated.

View Article and Find Full Text PDF

Ixeris sonchifolia (IS) has been demonstrated to have beneficial effects on clearing heat and detoxifying, promoting blood circulation and removing blood stasis. However, the protective effects of active fractions and the underlying mechanisms of IS against toxic heat and blood stasis syndrome (THBSS) remain unclear. This study aimed to investigate this.

View Article and Find Full Text PDF

Metal halide perovskites have excellent optoelectronic properties. This study aims to determine how the optoelectronic properties of a model perovskite, cesium lead bromide (CsPbBr), change with length and thickness in one dimension (1D). By examining the photophysics of CsPbBr quantum dots (QDs), nanowires (NWs), and nanorods (NRs), we observe the influence of confinement, exciton diffusion, and trapping on their optical properties.

View Article and Find Full Text PDF

Trapped in the NETs: Multiple Roles of Platelets in the Vascular Complications Associated with Neutrophil Extracellular Traps.

Cells

February 2025

Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, Hull HU6 7RX, UK.

Neutrophil extracellular traps (NETs) have received significant attention in recent years for their role in both the immune response and the vascular damage associated with inflammation. Platelets have been described as critical components of NETs since the initial description of this physio-pathological response of neutrophils. Platelets have been shown to play a dual role as responders and also as stimulators of NETs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!