Thyroid hormones (THs) are critical for metabolic regulation and brain development. Disruptions in TH homeostasis, especially during fetal development, can lead to irreversible neurodevelopmental impairments. Thyroid hormone system-disrupting chemicals (THSDCs), are of growing concern for human health due to their potential to interfere with TH signaling. This study investigates the toxicokinetic properties of two THSDCs: propylthiouracil (PTU), which inhibits TH synthesis, and pregnenolone-16α‑carbonitrile (PCN), which enhances the TH hepatic metabolism. Using in vitro approaches and in vivo models involving pregnant, fetal, and neonatal rats, we aimed to characterize the absorption, distribution, metabolism, and excretion (ADME) profiles of these compounds. Liver metabolism, fraction unbound, plasma concentrations, and tissue distribution of PTU and PCN were assessed. Our investigation demonstrated that PCN underwent quick liver metabolism, resulting in undetectable PCN levels in adult and newborn rat tissues as well as in maternal milk. In contrast, PTU exhibited high permeability through the intestinal barrier and was slowly metabolized by the liver, leading to high PTU concentrations in the maternal milk, thyroid gland, and the brain of fetuses and newborns. These latter results raise concerns regarding the potential direct effect of PTU on neonatal brain development. Especially, the hypothesis that PTU can interact with brain peroxidases involved in detoxification processes warrants further investigation. These findings highlight the intricate relationship between THSDC exposure, altered TH synthesis and metabolism, and subsequent impacts on neurodevelopment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2025.117282 | DOI Listing |
J Am Soc Mass Spectrom
March 2025
The Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates with a focus on two compounds: UCB-J and UCB2400.
View Article and Find Full Text PDFEuropace
March 2025
Clinical Cardiac Academic Group, Genetic and Cardiovascular Sciences Institute, City-St George's University of London, London, UK.
Atrial fibrillation (AF) is one of the most common cardiac diseases and a complicating comorbidity for multiple associated diseases. Many clinical decisions regarding AF are currently based on the binary recognition of AF being present or absent with the categorical appraisal of AF as continued or intermittent. Assessment of AF in clinical trials is largely limited to the time to (first) detection of an AF episode.
View Article and Find Full Text PDFOxygen plays a critical role in early neural development in brains, particularly before establishment of complete vasculature; however, it has seldom been investigated due to technical limitations. This study uses an in vitro human cerebral organoid model with multiomic analysis, integrating advanced microscopies and single-cell RNA sequencing, to monitor tissue oxygen tension during neural development. Results reveal a key period between weeks 4 and 6 with elevated intra-organoid oxygen tension, altered energy homeostasis, and rapid neurogenesis within the organoids.
View Article and Find Full Text PDFSci Adv
March 2025
College of Computer Science and Technology, Zhejiang University, Hangzhou, China.
Brain age gap (BAG), the deviation between estimated brain age and chronological age, is a promising marker of brain health. However, the genetic architecture and reliable targets for brain aging remains poorly understood. In this study, we estimate magnetic resonance imaging (MRI)-based brain age using deep learning models trained on the UK Biobank and validated with three external datasets.
View Article and Find Full Text PDFJ Immunol
March 2025
INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!