The role of necroptosis in pathological pregnancies: Mechanisms and therapeutic opportunities.

J Reprod Immunol

College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350122, China; Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou 350122, China. Electronic address:

Published: February 2025

Necroptosis, a distinctive form of programmed cell death differs mechanistically from apoptosis pyroptosis, and autophagy, is characterized by the activation of receptor-interacting protein kinases (RIPK1/RIPK3) and their downstream effector, mixed lineage kinase domain-like protein (MLKL). This programmed cell death pathway serves as a crucial mediator of inflammatory responses and has been implicated in the pathogenesis of diverse pathological conditions. Recent evidence has implicated dysregulated necroptosis in the pathogenesis of severe pregnancy complications, including preeclampsia (PE), fetal growth restriction (FGR), recurrent spontaneous abortion (RSA), and gestational diabetes mellitus (GDM). In these disorders, necroptosis promotes placental dysfunction through multiple interconnected mechanisms: amplification of pro-inflammatory cytokine cascades, aberrant immune activation, disruption of plasma membrane integrity, and subsequent tissue injury.These pregnancy-related pathologies consistently demonstrate elevated necroptotic signatures, correlating with adverse maternal-fetal outcomes. This comprehensive review synthesizes current understanding of the molecular mechanisms underlying necroptosis, with particular emphasis on its pivotal role in the etiopathogenesis of pregnancy-related disorders. Furthermore, we critically evaluate the therapeutic potential of targeting the necroptotic signaling axis, providing novel perspectives for developing targeted interventions to improve clinical outcomes in complicated pregnancies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jri.2025.104460DOI Listing

Publication Analysis

Top Keywords

programmed cell
8
cell death
8
role necroptosis
4
necroptosis pathological
4
pathological pregnancies
4
pregnancies mechanisms
4
mechanisms therapeutic
4
therapeutic opportunities
4
necroptosis
4
opportunities necroptosis
4

Similar Publications

In this study, the role of phosphorylation in the liquid-liquid phase separation (LLPS) of tau, the underlying driving forces, and the potential implications of this separation on protein conformation and subsequent protein aggregation were investigated. We compared in vivo-produced phosphorylated tau (p-tau) and nonphosphorylated tau under different coacervation conditions without adding crowding agents. Our findings revealed that spontaneous phase separation occurs exclusively in p-tau, triggered by a temperature shift from 4 °C to room temperature, and is driven by electrostatic and hydrophobic interactions.

View Article and Find Full Text PDF

Role of exosomes in regulating ferroptosis of tumor cells.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Medical Research Experimental Center, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, China.

Exosomes are nanoscale extracellular vesicles widely present in various body fluids. They carry a variety of substances, including proteins, lipids, and nucleic acids, and play significant roles in the body by participating in immune regulation, intercellular signal transduction, and the transport of proteins and nucleic acids. Exosomes can regulate tumor development and drug resistance by modulating ferroptosis.

View Article and Find Full Text PDF

Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.

View Article and Find Full Text PDF

The potassium chloride co-transporter 2 (KCC2) is required for neuronal development, and KCC2 dysregulation is implicated in several neurodevelopmental disorders, including schizophrenia, autism, and epilepsy. A dozen mutations in the KCC2-encoding gene, SLC12A5, are associated with these disorders, but few are fully characterized. To this end, we examined KCC2 biogenesis in a HEK293 cell model.

View Article and Find Full Text PDF

Purpose/objective(s): Use of intensity-modulated radiation therapy (IMRT) versus three-dimensional conformal external beam radiation therapy (3D-CRT) for definitive chemoradiation therapy (CRT) in locally advanced non-small cell lung cancer (LA-NSCLC) has been associated with decreased late pneumonitis, decreased high dose to the heart (itself associated with improved overall survival), and improved patient quality of life. In a statewide radiation oncology quality consortium, we sought to evaluate the impact of IMRT versus 3D-CRT treatment technique on dosimetry and toxicity.

Materials/methods: From 2012 to 2022, 1746 LA-NSCLC patients meeting inclusion criteria underwent definitive RT (90% CRT) with either 3D-CRT (n=313) or IMRT (n=1433) and were enrolled in the [quality consortium] prospective, multicenter statewide initiative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!