Ferrihydrite sulfidation is an important process influencing the environmental behavior of co-existent arsenate (As(V)) and cadmium (Cd(II)) pollutants in mining-impacted environments. However, the mineral evolution of ferrihydrite and the coupled mobilization behavior of co-existent As(V) and Cd(II) remain unclear. In this study, we have investigated As(V)-Cd(II)-bearing ferrihydrite conversion behavior induced by environmentally relevant concentrations of S(-II) (1 and 5 mM). PXRD, HR-TEM, and XAS results demonstrate that the co-existent As(V) and Cd(II) inhibit the conversion of ferrihydrite to secondary lepidocrocite (γ-FeO(OH)) and subsequently to goethite (α-FeO(OH)) at different S(-II) concentrations. Elevated As(V) and Cd(II) levels promote the formation of amorphous mackinawite (FeS) and pyrite (FeS). Lepidocrocite and greenockite (CdS) are the predominant secondary phases at 1 mM S(-II) but lepidocrocite and pyrite are dominant at 5 mM S(-II) when the As(V) and Cd(II) levels are low. These sulfidation transformation pathways reduce the mobilization of the co-existent As(V) and Cd(II). Cs-TEM and chemical extraction results reveal that substantial portions of Cd(II) and As(V) are incorporated into secondary pyrite and lepidocrocite, in addition to surface adsorption and greenockite precipitation. These findings not only enhance our understanding of the geochemical cycling of Fe(III), As(V), and Cd(II) in natural anoxic sulfidic environments but also may provide guidelines for developing effective remediation methods for As-Cd co-contaminated settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137734 | DOI Listing |
J Environ Sci (China)
August 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
Arsenic and cadmium contamination frequently coexist in the real environment. However, it remains a challenge for their simultaneous removal due to their distinct physicochemical properties at low cost. To this end, a cost-effective magnetic biochar adsorbent (ITBNa800) was prepared using biomass waste and iron tailings slag.
View Article and Find Full Text PDFJ Hazard Mater
February 2025
Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China. Electronic address:
Ferrihydrite sulfidation is an important process influencing the environmental behavior of co-existent arsenate (As(V)) and cadmium (Cd(II)) pollutants in mining-impacted environments. However, the mineral evolution of ferrihydrite and the coupled mobilization behavior of co-existent As(V) and Cd(II) remain unclear. In this study, we have investigated As(V)-Cd(II)-bearing ferrihydrite conversion behavior induced by environmentally relevant concentrations of S(-II) (1 and 5 mM).
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens 157 71, Greece.
This work describes fully integrated multifolding electrochemical paper-based devices (ePADs) for enhanced multiplexed voltammetric determination of heavy metals (Zn(II), Cd(II), and Pb(II)) using tunable passive preconcentration. The paper devices integrate five circular sample preconcentration layers and a 3-electrode electrochemical cell. The hydrophobic barriers of the devices are drawn by pen-plotting with hydrophobic ink, while the electrodes are deposited by screen-printing.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran.
In the present work, nitrogen-doped carbon was synthesized starting from a chitosan/urea mixture and immobilized at the surface of a bare glassy carbon electrode to detect Cd(II) ions using differential pulse-anodic stripping voltammetry method (DP-ASV). The synthesized nitrogen-doped carbon showed a significant potential for determining Cd(II) ions. Doping carbon with nitrogen atoms gives a structure with increased valence band energy, leading to acceleration of the electron transfer by creating an interaction of nitrogen's free electrons with Cd(II), which subsequently increases the peak current value.
View Article and Find Full Text PDFAnal Chem
November 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
A highly sensitive method for the determination of total arsenic (As) has been developed using photochemical vapor generation (PVG) coupled with inductively coupled plasma mass spectrometry (ICP MS). The efficient PVG of As is reported for the first time in the presence of Cd(II) in diluted formic acid (FA) medium. The PVG efficiency of 93 ± 1% can be achieved in the system with 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!