This study investigates the surface modification of TiCT MXene using tms-EDTA (EDTA@MXene) to develop an efficient adsorbent for divalent heavy metal cations, such as Cd²⁺, Cu²⁺, Ni²⁺, Pb²⁺, and Zn²⁺, from contaminated water. EDTA@MXene showed significantly enhanced adsorption capacities for these ions compared to pristine MXene. Using nickel ion (Ni²⁺) as a model adsorbate, EDTA@MXene demonstrated remarkable removal efficiency, reaching a maximum adsorption capacity of 249.5 mg/g as compared to the 61.4 mg/g of pristine MXene with fast kinetics and attaining equilibrium within 30 min. The results indicated that Ni²⁺ adsorption followed a pseudo-second-order kinetic model, with equilibrium data fitting both Langmuir and Freundlich isotherm models. As the classical adsorption models remained inconclusive on the underlying adsorption mechanisms, advanced statistical physics models were subsequently applied for deeper investigation. The findings revealed that Ni²⁺ ions adsorbed onto the surface in a non-parallel orientation. The adsorption process was reversible, endothermic, and driven mainly by physical interactions, with higher temperatures favoring greater adsorption capacity. EDTA@MXene demonstrated excellent reusability, maintaining high (>80 %) regeneration efficiency after five regeneration cycles. It also exhibited a high adsorption capacity for Ni²⁺ ions from nickel electroplating wastewater, highlighting its potential for real application in the treatment of metal-contaminated industrial wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137667 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
Northwest Institute for Nonferrous Metal Research, Xi'an, Shannxi 710016, China.
Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.
View Article and Find Full Text PDFSmall
March 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.
View Article and Find Full Text PDFAdv Mater
March 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.
View Article and Find Full Text PDFAdv Mater
March 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
The delicate construction of electrocatalysts with high catalytic activity is a strategic method to enhance the kinetics of lithium-sulfur batteries (LSBs). Adjusting the local structure of the catalyst is always crucial for understanding the structure-activity relationship between atomic structure and catalyst performance. Here, in situ induction of electron-deficient B enables phase engineering MoC, realizing the transition from hexagonal (h-MoC) to cubic phase (c-B-MoC).
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal gangue was used in this study as the primary material for the synthesis of a fully coal gangue-based phosphorus-silicon-aluminum (SAPO-5) molecular sieve through a hydrothermal process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!