Glycine betaine (GB) is commonly used as an osmotic regulator and a donor to facilitate changes in methylation in plants and animals, thereby enhancing stress resistance. However, low temperature combined with low light stress represent the most prevalent stresses during pepper growth period in northwest China, and limited studies have focused on the potential stress-mitigating effects of GB. Therefore, to examine the regulatory mechanism of GB-induced tolerance to LL stress, pepper seedlings were pretreated with 20 mmol L GB and 60 μmol L 3-Deazaneplanocin A hydrochloride at a temperature of 10/5 °C and illumination of 100 μmol m s. The results demonstrated that GB significantly alleviated the detrimental effects of low temperature combined with low light stress on growth of primary and lateral roots and increased the roots absorption of mineral nutrients (N, P, Ca, Fe, and Zn). In addition, GB induced the expression of the genes for CaSOD, CaPOD, CaCAT, CaGR1, and CaDHAR, improved osmotic regulation, and increased the activities of enzymatic (superoxide dismutase, peroxidase, catalase, glutathione reductase, and dehydroascorbate reductase) and non-enzymatic antioxidants (ascorbate and glutathione). This resulted in enhanced scavenging of reactive oxygen species, thereby maintaining a balanced oxidation-reduction within the cells. Furthermore, GB substituted S-adenosylmethionine, a partial methylation donor, during the methyl group metabolism process, altering the mA methylation level and increasing the resistance of pepper seedlings to LL stress. Overall, exogenous GB pretreatment could be used as a potential strategy for enhancing the LL tolerance of plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2025.109705DOI Listing

Publication Analysis

Top Keywords

low temperature
12
temperature combined
12
combined low
12
low light
12
glycine betaine
8
light stress
8
pepper seedlings
8
low
6
stress
5
betaine enhances
4

Similar Publications

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

Development of a Zeolitic Imidazolate Framework Based Superhydrophobic Surface with Abrasion Resistance, Corrosion Protection, and Anti-icing.

Langmuir

March 2025

Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.

Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.

View Article and Find Full Text PDF

On-Off Magnetism of Ferromagnetic Metals via Electrochemical Driven Band Filling.

Nano Lett

March 2025

College of Physics, Weihai Innovation Research Institute, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.

Ferromagnetic metals, distinguished by high Curie temperatures and magnetization, are crucial in voltage-controlled magnetism for potential room-temperature applications in low-power multifunctional devices. Despite numerous attempts based on various mechanisms, achieving ideal magnetic modulation in metals remains challenging. This work proposes a new mechanism to control bulk metal magnetism by modulating valence electron filling in spin-polarized bands, leveraging the Slater-Pauling rule in alloys.

View Article and Find Full Text PDF

We studied a family of coordination compounds with short intramolecular spatial separation between an organic chromophore and a metal centre. The specific geometry was realized by means of anthracene-functionalized tertiary aryl phosphanes. Their silver and gold complexes (1, 2) operate as conventional fluorophores, with photophysical behavior defined by anthracene-localized allowed transitions.

View Article and Find Full Text PDF

The role of excitations in supercooled liquids: Density, geometry, and relaxation dynamics.

Proc Natl Acad Sci U S A

March 2025

Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.

Low-energy excitations play a key role in all condensed-matter systems, yet there is limited understanding of their nature in glasses, where they correspond to local rearrangements of groups of particles. Here, we introduce an algorithm to systematically uncover these excitations up to the activation energy scale relevant to structural relaxation. We use it in a model system to measure the density of states on a scale never achieved before, confirming that this quantity shifts to higher energy under cooling, precisely as the activation energy does.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!