About 90 % of global lactate production is derived from bacterial fermentation of sugars via pure homofermentative cultures in batch mode. Acid whey, which is a lactose-rich wastewater from the yogurt industry, can be used as an alternative substrate for commercial lactate production. Operating reactor microbiomes reduces the lactate production costs by circumventing sterilization, while continuous operation with biomass retention achieves higher productivity at shorter production times. To find the best reactor configuration with biomass retention for lactate production from acid whey, we operated three different reactor configurations: (1) an upflow anaerobic sludge blanket (UASB) reactor; (2) an anaerobic filter reactor (AFR); and (3) an anaerobic continuously stirred tank reactor (CSTR) with a hollow-fiber membrane module. We operated at different hydraulic retention times (HRTs) to find the optimum production parameters at a temperature of 50 °C and a pH of 5.0. We did not use an inoculum but enriched the endogenous D-lactate-producing Lactobacillus spp. that later dominated the reactor microbiomes (> 90 % relative abundance). Undissociated lactic acid concentrations of more than 60 mmol C L inhibited the microbiomes. We alleviated the inhibition effect by shortening the HRT to 0.6 days and using diluted acid-whey substrate (1.67-fold dilution) to achieve almost complete conversion of the acid-whey sugars to lactate. At the 0.6-day HRT, the AFR and CSTR performed better than the UASB reactor due to their better cell retention abilities. During the period between Day 365-384, we experienced an error in the pH control of the CSTR system during which the pH value dropped to 4.3. After this pH-error period, the lactose and galactose-into-lactate (LG-into-LA) conversion efficiency for the CSTR considerably improved and surpassed the AFR. We achieved the highest lactate conversion rate of 1256 ± 46.3 mmol C L d (1.57 ± 0.06 g L h) at a LG-into-LA conversion efficiency of 82.2 ± 3.4 % (in mmol C), with a yield of 0.85 ± 0.02 mmol C mmol C (product per consumed substrate) for the CSTR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2025.123365 | DOI Listing |
Cells
March 2025
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico.
Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis.
View Article and Find Full Text PDFCells
February 2025
Milk Science Research Institute, MEGMILK SNOW BRAND Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi, Saitama 350-1165, Japan.
Background/objectives: Intestinal alkaline phosphatase (IAP) is an enzyme expressed in the intestinal brush border, which may exert anti-inflammatory effects by detoxifying lipopolysaccharides (LPSs), thereby preventing metabolic disorders. Various food components have been reported to influence IAP activity. However, few studies have evaluated the effects of fermented milk on IAP activity.
View Article and Find Full Text PDFAdv Mater
March 2025
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Overproduction of pathogenic cell-free DNA (cfDNA) and reactive oxygen species (ROS) plays crucial roles in the onset and perpetuation of ulcerative colitis (UC). Inspired by sweeping robots, a magnesium@polylactic acid-glycolic acid copolymer@polyethylenimine (Mg@PLGA@PEI) microswimmer capable of cleaning off deleterious disease triggers along its path of progress is designed. Mg@PLGA@PEI is successfully synthesized by adopting a core-shell structure with a small opening which allows for Mg-water reaction.
View Article and Find Full Text PDFJ Toxicol Environ Health A
March 2025
Pathology and Physiology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
This study investigated the potential pulmonary toxicity of polycarbonate (PC) emissions from fused filament fabrication (FFF) three-dimensional printing (3DP) via inhalation in Sprague Dawley rats. Previously, our results demonstrated no significant pulmonary effects following exposure to a 0.5 mg/m PC.
View Article and Find Full Text PDFJ Sci Food Agric
March 2025
Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-products and Food, Hebei North University, Zhangjiakou, China.
Background: To address the severe health risks posed by aflatoxin B (AFB) in grain, this study employed polydopamine-based atom transfer radical polymerization (p-ATRP) and cytochrome C-catalyzed atom transfer radical polymerization (c-ATRP) as cytocompatible modification techniques to coat the surface of living Lactobacillus plantarum (LAB) cells with the temperature-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm).
Results: Two novel bioadsorbents were synthesized. The incorporation of PNIPAAm as an 'AFB vacuum cleaner' layer significantly enhances LAB's adsorption efficiency and enables temperature-controlled desorption.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!