The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.124693 | DOI Listing |
Mol Nutr Food Res
March 2025
Graduate Program in Food, Nutrition and Health - Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro (RJ), Brazil.
Scope: The uremic toxin trimethylamine N-oxide (TMAO) accumulates in patients with chronic kidney disease (CKD) and is associated with its progression, cardiovascular disease, and other complications. The gut microbiota produces TMAO from substrates mainly found in red meat, eggs, and dairy. However, some saltwater fish also contain high levels of TMAO.
View Article and Find Full Text PDFFront Immunol
March 2025
Fisheries College of Jimei University, Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Xiamen, China.
Introduction: The aim of this study is to investigate the effects of supplementing () on hybrid grouper ( ♀ × ♂), with a particular focus on its impact on growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, tight junction protein (ZO-1) expression, and inflammatory gene expression. The study seeks to uncover the potential health benefits of C. butyricum supplementation for hybrid grouper.
View Article and Find Full Text PDFBiosaf Health
April 2024
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
Chicken is an important food animal worldwide and plays an important role in human life by providing meat and eggs. Despite recent significant advances in gut microbiome studies, a comprehensive study of chicken gut bacterial, archaeal, and viral genomes remains unavailable. In this study, we constructed a chicken multi-kingdom microbiome catalog (CMKMC), including 18,201 bacterial, 225 archaeal, and 33,411 viral genomes, and annotated over 6,076,006 protein-coding genes by integrating 135 chicken gut metagenomes and publicly available metagenome-assembled genomes (MAGs) from ten countries.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2025
Department of Endocrinology & Metabolism, Shenzhen University General Hospital, Shenzhen, China.
Background: The gut microbiota plays a pivotal role in various metabolic disorders. Orlistat has shown beneficial effects on weight loss and metabolism, but its direct impact on the gut microbiota has not been extensively reported. Thus, this study aimed to explore the effects of orlistat on the gut microbiota in mice with high-fat diet-induced obesity.
View Article and Find Full Text PDFImmune Netw
February 2025
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
Aromatic amino acid (AAA) metabolites, derived from tryptophan, phenylalanine, and tyrosine through coordinated host and microbial metabolism, have emerged as critical modulators of immune function. We examine the complex journey of AAAs from dietary intake through intestinal absorption and metabolic transformation, highlighting the crucial role of host-microbe metabolic networks in generating diverse immunomodulatory compounds. This review provides a unique integrative perspective by mapping the molecular mechanisms through which these metabolites orchestrate immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!