The side effects of chemotherapy drugs have prompted the development of targeted therapies. Distinctive abundance of lipid peroxidation (LPO) in tumour cells represents a potential target for drug delivery. However, LPO-based targeted ligands remain under-exploited. In this work, the targeting of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), was investigated within a mesoporous silica nanoparticle (MSN) loaded with doxorubicin (DOX) and connected with 4-NH-TEMPO obtaining DOX/MSN-TEMPO. A cellular uptake assay showed a faster uptake of DOX/MSN-TEMPO than blank group on Hela, L929 and 4T1 cells, revealing TEMPO's active targeting ability for tumour cells. After observing this phenomenon, the fabrication of a basic copolymer module carrying cyanine5.5 (Cy5.5) and TEMPO was reported. experiments were conducted on mouse MCF-7 tumour models, displaying selective aggregation of nano micelles at the tumour site and thereby verifying the broad applicability of TEMPO. Since the large amounts of LPO lead to the presence of numerous free radicals, whereas TEMPO, as a free radical capture agent, further selectively targets tumour cells. These findings verify the targeting ability of TEMPO for most tumour cells and collectively underscore the potential of TEMPO and analogous capture agents as innovative targeted ligands for drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1061186X.2025.2474639 | DOI Listing |
FASEB J
March 2025
Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, Hunan, China.
The ribophorin family, including RPN1, has been associated with tumor progression, but its specific role in pan-cancer dynamics remains unclear. Using data from TCGA, GTEx, and Ualcan databases, we investigated the relationship of RPN1 with prognosis, genomic alterations, and epigenetic modifications across various cancers. Differential analysis revealed elevated RPN1 expression in multiple cancer types, indicating a potential prognostic value.
View Article and Find Full Text PDFFASEB J
March 2025
Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China.
Breast cancer (BC) is one of the most common malignant tumors among women, accounting for 24.5% of all cancer cases and leading to 15.5% of cancer-related mortality.
View Article and Find Full Text PDFCancer Med
March 2025
Universidad Autónoma del Estado de Morelos, Facultad de Medicina, Cuernavaca, Morelos, Mexico.
Introduction: Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood.
View Article and Find Full Text PDFClin Exp Immunol
March 2025
School of Medicine, Guizhou University, Guiyang 550025, China.
Introduction: Immunotherapy has rapidly become a primary treatment option for many lung cancer patients because of its success in treating this prevalent and deadly disease. However, the success of immunotherapy relies on overcoming the immunosuppressive tumour microenvironment, making remodelling this environment a potential strategy for lung cancer therapy. Research suggests that Toll-like receptor (TLR) agonists can impede tumour growth by promoting the conversion of tumour-associated macrophages into an M1-like state or enhancing dendritic cell development.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China.
The abnormal tumor mechanical microenvironment due to specific cancer-associated fibroblasts (CAFs) subset and low tumor immunogenicity caused by inefficient conversion of active chemotherapeutic agents are two key obstacles that impede patients with desmoplastic tumors from achieving stable and complete immune responses. Herein, it is demonstrated that FAP-αCAFs-induced stromal stiffness accelerated tumor progression by precluding cytotoxic T lymphocytes. Subsequently, a cascade-responsive nanoprodrug capable of re-educating FAP-αCAFs and amplifying tumor immunogenicity for potentiated cancer mechanoimmunotherapy is ingeniously designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!