Aberrant iron metabolism is frequently observed in cancers, including endometrial cancer (EC). However, the role of transferrin receptor (TFRC), a key regulator of iron metabolism, remains unclear in endometrial cancer. We found transferrin receptor expression was significantly upregulated in endometrial cancer tissues compared to adjacent nontumor tissues, and high transferrin receptor levels were associated with poor prognosis. Functional studies revealed that transferrin receptor knockdown impaired endometrial cancer cell proliferation in vitro and in vivo, while transferrin receptor overexpression enhanced endometrial cancer cell proliferation. Mechanistically, transferrin receptor activated the PI3K/AKT/mTOR signaling pathway, as its knockdown suppressed the pathway, and rapamycin, an mTOR inhibitor, reversed transferrin receptor-induced pathway activation and proliferation. Modulation of the labile iron pool by ferric ammonium citrate (FAC) or deferoxamine (DFO) rescued transferrin receptor-induced biological effects. Additionally, AURKA was identified as a regulator of transferrin receptor expression. These findings demonstrate the oncogenic role of transferrin receptor in endometrial cancer and suggest that targeting iron homeostasis and the PI3K/AKT/mTOR pathway may represent potential therapeutic strategies for endometrial cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cas.70015 | DOI Listing |
ACS Chem Neurosci
March 2025
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.
Bispecific antibodies (bAbs) that engage cerebrovascular targets, induce transport across the blood-brain barrier (BBB), and redistribute to secondary targets within the brain parenchyma have the potential to transform the diagnosis and treatment of a wide range of central nervous system disorders. Full understanding of the pharmacokinetics (PK) of these agents, including their potential for delivering cargo into brain parenchymal cells, is a key priority for the development of numerous potential therapeutic applications. To date, the brain PK of bAbs that target transferrin receptor (TfR-1) and CD98 heavy chain (CD98hc) has been characterized using techniques incapable of distinguishing between CNS clearance of intact protein from uptake and catabolism by brain parenchymal cells.
View Article and Find Full Text PDFFront Aging Neurosci
February 2025
Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.
Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles.
View Article and Find Full Text PDFBackground: The essential trace element iron, which can occur in various oxidation states, is required for many biochemical reactions and processes in the human body.
Methods: This review summarizes the current knowledge about the physiology of iron metabolism.
Results: The physiological functions comprise oxygen transport in the blood, electron transport processes, DNA synthesis and gene regulation, the regulation of cell growth and differentiation, and the energy production in mitochondria.
Nutr Rev
March 2025
Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
Context: Middle childhood, adolescence, and young adulthood are characterized by high nutritional demands and vulnerability to anemia. Limited efforts have been made to synthesize the evidence comparing the effects of iron and multiple micronutrient (MMN) supplementation in these populations.
Objective: In this study we sought to examine the effects of iron and MMN on anemia and anthropometric variables among people aged 5 to 24 years in low- and middle-income countries.
Am J Physiol Heart Circ Physiol
March 2025
Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, Texas, USA.
We investigated ferroptosis, a type of programmed cell death mechanism, in human hearts donated after brain death (DBD) and those donated after circulatory death (DCD), focusing on warm ischemia time (WIT) and cold storage. A total of twenty-four hearts were procured, with six from the DBD group and eighteen from the DCD group. The DCD group was divided into three subgroups, each containing six hearts, based on different WITs of 20, 40, and 60 minutes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!