American ginseng (Panax quinquefolius) is considered as a functional food and a medicinal plant, with its fruit containing valuable bioactive ingredients. However, limited knowledge is available regarding its antioxidant capacity, variation in bioactive components, and biosynthetic pathways at various growth stages. The present study examined the in vitro antioxidant capacity of the American ginseng fruit from Wendeng, Shandong at various growth stages, and conducted metabolomic as well as transcriptomic analyses to elucidate the accumulation patterns and biosynthesis of bioactive compounds. The results showed that antioxidant capacity, total flavonoid content (TFC), and total phenolic content (TPC) in fruits at early, middle, and late developmental stages were significantly higher than those in 4-year-old ginseng roots. Notably, fruits at the early developmental stage exhibited the highest antioxidant capacity, which initially declined and subsequently increased as the fruits continued to grow and develop. TFC and TPC were closely correlated with antioxidant capacity in fruits. Widely targeted metabolomics identified 1,094 metabolites with significant changes throughout fruit development, including 223 terpenoids, 164 phenolic acids, and 149 flavonoids. A total of 139 metabolites were closely associated with antioxidant activity in the American ginseng fruits. Furthermore, several genes, such as DFR, LDOX, F3H, CHI, DDS, CYP, UGT, BAHD, as well as MYB, bHLH, and NAC transcription factors (TFs) were identified to be potentially associated with the fruit flavonoids and ginsenosides biosynthesis and their corresponding regulatory networks. The findings provid valuable insights for enhancing the development and utilization of American ginseng fruits as functional foods as well as advancing their quality and breeding practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2025.115884 | DOI Listing |
J Genet Eng Biotechnol
March 2025
Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. Electronic address:
Despite having valuable and novel metabolites, the marine microalgae species are still not thoroughly investigated for their pharmaceutical and nutraceutical importance. Therefore, this study was focused on investigating the crude extracts of marine green microalgae species, Tetraselmis sp., Nannochloropsis sp.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China. Electronic address:
Proline rich-39 (PR-39) is a natural antimicrobial protein with good antibacterial and anti-inflammatory activities. The miniature Wuzhishan pig (WZSP) has important similarities to humans in anatomical structure, physiological characteristics, and nutrient metabolism that make it an important model animal for biomedical research. This study aimed to investigate the protective effect and therapeutic mechanism of PR-39 on intestinal barrier function using the LPS-induced enteritis model in WZSPs.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China. Electronic address:
Tannins play key roles in regulating ecological processes within mangrove ecosystems, but the structures of mangrove condensed tannins (CT) and hydrolysable tannins (HT), as well as their antioxidant and antibacterial activities, are not well understood. In this study, MALDI-TOF MS was used to analyze the structural components of oligomers and polymers in phenolic extracts from Kandelia obovata, Aegiceras corniculatum, and Sonneratia apetala. Results identified two primary structural units: procyanidins (PC) and prodelphinidins (PD), with mass-to-charge ratios of 288 Da and 304 Da, respectively, and a 16 Da interval indicating differences in hydroxylation.
View Article and Find Full Text PDFFood Chem Toxicol
March 2025
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China. Electronic address:
Long-term fluoride exposure can produce neurotoxicity. Anthocyanins, as antioxidants, have a certain protective effect in nerve damage. This study aimed to investigate the protective role of anthocyanins in fluoride-induced neurological damage due to endoplasmic reticulum stress (ERS).
View Article and Find Full Text PDFEnviron Res
March 2025
School of Plant, Environment and Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA.
Plant-derived phenolic compounds could regulate redox reactions due to their antioxidative properties. In this study, soils from coastal wetlands including bare flat (BF), cyperus(Cyperus malaccensis) (CY), reed (Phragmites australis) (RE), and mangrove(Kandelia obovata) (MA) in Minjiang estuary region were selected. Anaerobic microcosm incubation experiments were conducted to investigate the petroleum hydrocarbon (PH) degradation process through denitrification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!