Physiologically relevant gastrointestinal digestion models for infants, adults, and the elderly are commonly used to explore the fate of food in vitro. However, no consensus protocol exists to simulate the specific conditions observed in the stomach of people using oral proton pump inhibitors (PPIs), a class of widely prescribed medications that reduce gastric acid secretion and may alter food digestion and nutrient absorption. The first objective of this study was to propose an in vitro gastric digestion protocol adapted to model PPI use. This protocol is an extension of the semi-dynamic INFOGEST protocol previously developed to mimic the digestion of an adult human (referred to hereinafter as "Standard"), with two modifications based on reported clinical effects of PPIs: (i) a final gastric pH of 4.2 and (ii) a 50 % reduction in simulated gastric acid fluid volume. The second objective was to compare the release kinetics of peptides, soluble carbohydrates, lipids, and minerals during simulated gastric digestion of a mixed meal (bread, cheese, and tomato) with both standard and PPI versions of the protocol. Results demonstrated that the release of peptides, arabinose, and minerals, including calcium, magnesium, and phosphorus, was significantly (p < 0.05) reduced in the PPI model, while the hydrolyses of starch and lipids, assessed through maltose release and triacylglycerol disappearance, respectively, were not significantly affected. These findings are in agreement with the expected effects of reduced gastric acidity on pepsin activity and mineral solubility. These findings are also consistent with known or presumed side effects of PPIs such as an increased risk of hypomagnesemia, fractures, skeletal muscle loss, and vitamin B deficiency. In conclusion, this modified INFOGEST protocol appears to serve as a valuable tool to study the side effects of PPI use on food digestion and related nutrient bioaccessibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2025.115833 | DOI Listing |
Foods
February 2025
Department of Food Science & Technology, The University of Georgia, 100 Cedar St #211, Athens, GA 30602, USA.
Microencapsulation using a double emulsion system can improve the viability of probiotic cells during storage and digestion. In this study, a double emulsion system W/O/W was designed to microencapsulate using pea protein (PP) and cellulose nanocrystals (CNCs) at various proportions, and the effect of their proportions on the stability and efficacy of the encapsulation system was studied. The double emulsions were prepared by a two-step emulsification process: the internal aqueous phase containing probiotic strain (W) was homogenized into the oil phase (O), which was then homogenized into the external aqueous phase (W) containing 15% wall materials with varying proportions of PP and CNCs [F1 (100:0), F2 (96:4), F3 (92:8), F4 (88:12), F5 (84:16), F6 (80:20)].
View Article and Find Full Text PDFInt J Mol Sci
March 2025
Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
Afferent vagal neurons convey gut-brain signals related to the mechanical and chemical sensing of nutrients, with the latter also mediated by gut hormones secreted from enteroendocrine cells. Cell bodies of these neurons are located in the nodose ganglia (NG), with the right NG playing a key role in metabolic regulation. Notably, glucagon-like peptide-1 receptor (GLP1R) neurons primarily innervate the muscle layer of the stomach, distant from glucagon-like peptide-1 (GLP-1)-secreting gut cells.
View Article and Find Full Text PDFAnimals (Basel)
March 2025
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
The diversity and composition of the gut microbiota are widely recognized as fundamental factors influencing the well-being and productivity of domestic animals. Advancements in sequencing technologies have revolutionized studies in this research field, allowing for deeper insights into the composition and functionality of microbiota in livestock. Ruminants and monogastric animals exhibit distinct digestive systems and microbiota characteristics: ruminants rely on fermentation, while monogastrics use enzymatic digestion, and monogastric animals have simpler stomach structures, except for horses and rabbits, where both processes coexist.
View Article and Find Full Text PDFCancers (Basel)
March 2025
Gastroenterology and Endoscopy Unit, Istituto Mediterraneo per i Trapianti e Terapie di alta Specializzazione-IRCCS ISMETT, 90127 Palermo, Italy.
This multicenter retrospective study included patients undergoing EUS-guided GI anastomoses from 2016 to 2023. Indications for EUS-guided anastomosis were GOO, ALS or patients with altered anatomy needing endoscopic interventions. The primary outcome was technical success, while secondary outcomes included clinical success, safety, lumen-apposing metal stent (LAMS) patency, and the need for reinterventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!