Background: Macrophages are required for development and tissue repair and protect against microbial attacks. In response to external signals, monocytes differentiate into macrophages, but our knowledge of changes that promote this transition at the level of mRNA processing, in particular mRNA polyadenylation, needs advancement if it is to inform new disease treatments. Here, we identify CFIm25, a well-documented regulator of poly(A) site choice, as a novel mediator of macrophage differentiation.

Methods: CFIm25 expression was analyzed in differentiating primary human monocytes and monocytic cell lines. Overexpression and depletion experiments were performed to assess CFIm25's role in differentiation, NF-κB signaling, and alternative polyadenylation (APA). mRNA 3' end-focused sequencing was conducted to identify changes in poly(A) site use of genes involved in macrophage differentiation and function. Cell cycle markers, NF-κB pathway components, and their targets were examined. The role of CFIm25 in NF-κB signaling was further evaluated through chemical inhibition and knockdown of pathway regulators.

Results: CFIm25 showed a striking increase upon macrophage differentiation, suggesting it promotes this process. Indeed, CFIm25 overexpression during differentiation amplified the acquisition of macrophage characteristics and caused an earlier slowing of the cell cycle, a hallmark of this transition, along with APA-mediated downregulation of cyclin D1. The NF-κB signaling pathway plays a major role in maturation of monocytes to macrophages, and the mRNAs of null, TBL1XR1, and NFKB1, all positive regulators of NF-κB signaling, underwent 3'UTR shortening, coupled with an increase in the corresponding proteins. CFIm25 overexpression also elevated phosphorylation of the NF-κB-p65 transcription activator, produced an earlier increase in the NF-κB targets p21, Bcl-XL, ICAM1 and TNF-α, and resulted in greater resistance to NF-κB chemical inhibition. Knockdown of Tables 2 and TBL1XR1 in CFIm25-overexpressing cells attenuated these effects, reinforcing the mechanistic link between CFIm25-regulated APA and NF-κB activation. Conversely, depletion of CFIm25 hindered differentiation and led to lengthening of NFKB1, TAB2, and TBL1XR1 3' UTRs.

Conclusions: Our study establishes CFIm25 as a key mediator of macrophage differentiation that operates through a coordinated control of cell cycle progression and NF-κB signaling. This linkage of mRNA processing and immune cell function also expands our understanding of the role of alternative polyadenylation in regulating cell signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871739PMC
http://dx.doi.org/10.1186/s12964-025-02114-1DOI Listing

Publication Analysis

Top Keywords

nf-κb signaling
20
macrophage differentiation
16
alternative polyadenylation
12
cell cycle
12
nf-κb
10
cfim25
9
nf-κb pathway
8
mrna processing
8
polya site
8
mediator macrophage
8

Similar Publications

The release of synaptic vesicles (SVs) at the synaptic junction is a complex process involving various specialized proteins that work in unison. Among these, Bassoon has emerged as a significant protein, particularly noted for its association with various neurological and aging-related diseases. Due to its structural and functional roles, Bassoon has become a focus of recent research, especially in understanding its implications in neurodegenerative and psychiatric disorders.

View Article and Find Full Text PDF

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Guidance and control of multiple unmanned surface vehicles (Multi-USVs) present many challenges due to their under-actuation and the unknown environmental disturbance. This research addresses the formation guidance and control problems of multi-USVs by designing a global fixed-time constrained guidance and control formation approach. First, a global fixed-time control Lyapunov function (GFCLF) is proposed using an innovative shift function to deal with the fixed-time output partial constraint.

View Article and Find Full Text PDF

The IL-6 axis in vascular inflammation: effects of IL-6 receptor blockade on vascular lesions from patients with giant-cell arteritis.

Ann Rheum Dis

March 2025

Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic (member of European Reference Network [ERN]-for rare diseases RITA), University of Barcelona, Centre de Recerca biomèdica (CRB)-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Electronic address:

Objectives: Blocking interleukin (IL)-6-receptor with tocilizumab has been a major advance in the treatment of giant-cell arteritis (GCA), supporting a crucial role of IL-6 receptor signalling. However, nearly half of the patients are not able to maintain glucocorticoid- free remission with tocilizumab. The impact of tocilizumab on vascular lesions of GCA is largely unknown since conflicting results have been obtained by imaging.

View Article and Find Full Text PDF

The subject of this study is Boiss. 1844: a member of the section , subsection . This species is infrequently included in phylogenetic studies and is commonly regarded as a heterotypic synonym of Tausch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!