Background: Transplantation of nasal mucosa-derived mesenchymal stem cells (EMSCs) overexpressing neuropeptide S (NPS) is a promising approach for treating spinal cord injury (SCI). Despite the potential of stem cell therapy, challenges remain regarding cell survival and differentiation control. We aimed to conduct orthotopic transplantation of transected spinal cord to treat rats with complete SCI.
Methods: In this study, we loaded NPS-overexpressing EMSCs onto hydrogels to enhance cell survival in vivo and promote neuronal differentiation both in vitro and in vivo. However, in vitro co-culture promoted greater neuronal differentiation of neural stem cells (P < 0.01). When transplanted in vivo, NPS-overexpressing EMSCs showed greater cell survival in the transplanted area compared with stem cells without gene modification within 4 weeks after spinal cord implantation in rats (P < 0.01).
Results: Compared with those in the other groups, stable overexpression of NPS-EMSCs in a rat model with SCI significantly improved the treatment effect, reduced glial scar formation, promoted neural regeneration and endogenous neural stem cell proliferation and differentiation into neurons, and improved motor function.
Conclusions: These results indicate that this effect may be achieved by the overexpression of NPS-EMSCs through the activation of the PI3K/Akt/GSK3β signaling pathway. Overall, the overexpression of EMSCs significantly improved the therapeutic effect of SCI in rats, strongly supporting the potential for gene modification of mesenchymal stem cells in clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871753 | PMC |
http://dx.doi.org/10.1186/s13287-025-04250-4 | DOI Listing |
PLoS One
March 2025
Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China.
Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.
Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.
Proc Natl Acad Sci U S A
March 2025
Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.
Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting.
View Article and Find Full Text PDFSTAR Protoc
March 2025
Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain. Electronic address:
Human cerebral organoids (hCOs) provide an excellent model for the study of human brain development and disease. Here, we present a protocol to obtain hCOs directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures, avoiding cell dissociation and posterior embryoid body (EB) aggregation. We describe steps for subjecting 2D cultures to a neural fate and subsequently developing hCOs.
View Article and Find Full Text PDFCell Rep
March 2025
Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark. Electronic address:
Plasmacytoid dendritic cells (pDCs) play a pivotal role in immune responses, particularly against viral infections. pDCs exhibit diverse functions, including interferon production, cytokine secretion, and antigen presentation. Here, we investigate the antigen cross-presentation capacity of pDCs and their role in CD8 T cell activation.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2025
Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States.
Offspring exposed to metformin treatment for gestational diabetes mellitus (GDM) experience altered growth patterns that increase the risk for developing cardiometabolic diseases later in life. The adaptive cellular mechanisms underlying these patterns remain unclear. Therefore, the objective of this study was to determine if chronic metformin exposure associated with GDM treatment elicits infant cellular metabolic adaptations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!