ARv7 promotes the escape of prostate cancer cells from androgen deprivation therapy-induced senescence by mediating the SKP2/p27 axis.

BMC Biol

Department of Biochemistry & Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.

Published: February 2025

Background: Androgen deprivation therapy (ADT) induces cellular senescence and tumor stasis, thus serving as the standard treatment for prostate cancer (PCa). However, continuous suppression of canonical androgen receptor signaling actually leads to the switch from androgen-responsive growth to androgen-independent growth, contributing to "escape" from this ADT-induced senescence (AIS) and, subsequently, the development of castration-resistant prostate cancer (CRPC). Unfortunately, the mechanism underlying this phenomenon remains elusive.

Results: In this study, we demonstrated that androgen receptor splicing variant 7 (ARv7), a dominant factor mediating abnormal AR signaling and ADT resistance, is closely associated with outgrowth from AIS of PCa cells. Mechanistically, ARv7 binds to the promoter of SKP2, activating its transcription, and then promotes the proteasomal degradation of the cell cycle regulator p27 and G1/S transition. In addition, we applied bioinformatic and in vitro analyses to show that SKP2 expression level is dramatically inhibited upon ADT, but its reactivation is one key step during the establishment of CRPC. Finally, we also demonstrated that SKP2 inhibitor treatment can significantly inhibit the growth of androgen-independent cell lines and enhance the efficacy of ADT.

Conclusions: Our work reveals a novel role of ARv7 in regulating AIS and suggests that targeting the ARv7/SKP2/p27 axis could be a potential strategy to delay disease progression to the CRPC state during prolonged ADT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871636PMC
http://dx.doi.org/10.1186/s12915-025-02172-4DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
androgen deprivation
8
androgen receptor
8
growth androgen-independent
8
arv7
4
arv7 promotes
4
promotes escape
4
escape prostate
4
cancer cells
4
androgen
4

Similar Publications

T-cell Engagers in Prostate Cancer.

Eur Urol

March 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. Electronic address:

Owing to the "cold" tumor immune microenvironment of prostate cancer, immune-targeting agents have shown limited efficacy in patients with advanced prostate cancer, highlighting the need for new therapies with novel mechanisms of action. In this context, T-cell engagers (TCEs), which induce T-cell-mediated killing of cancer cells by binding the CD3 receptor on T cells and a specific tumor antigen expressed on malignant cells, represent a promising therapeutic option. Multiple studies have explored the use of TCEs in previously treated patients with metastatic castration-resistant prostate cancer, and several ongoing trials are currently assessing novel TCEs either as single agents or in combinatorial regimens with molecules with a distinct mechanism of action (eg, androgen receptor pathway inhibitors and other immune-targeting agents).

View Article and Find Full Text PDF

Hereditary breast and ovarian cancer syndrome (HBOC) is traditionally associated with mutations in the BRCA1 and BRCA2 genes, predominantly impacting breast, ovarian, pancreatic, and prostate cancers. However, recent research suggests that these mutations may also predispose carriers to a broader spectrum of malignancies, including biliary tract, cervical, colorectal, endometrial, esophageal, and gastric cancers. This review presents findings from extensive datasets, including a significant study from a nationwide Japanese biobank that examined cancer risks in 63,828 patients and 37,086 controls.

View Article and Find Full Text PDF

Next generation of porphysomes for improved photodynamic therapy applications.

J Control Release

March 2025

Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France. Electronic address:

Porphysomes are a class of liposome-like nanoparticles that have demonstrated efficacy in photothermal therapy (PTT) and photodynamic therapy (PDT) against cancer. These nanoparticles results from the self-assembly of amphiphilic phospholipid-porphyrin (PL-Por) conjugates. Despite their potential, porphysomes exhibit a high photothermal effect and a weak photodynamic activity as long as they remain intact within the body.

View Article and Find Full Text PDF

The patient was a 51-year-old man who was diagnosed as having prostate cancer(adenocarcinoma)in December Year X-3. He underwent total prostatectomy in June Year X-2. The lesions were confined to the right lobe of the prostate.

View Article and Find Full Text PDF

The contribution of coding variants to the heritability of multiple cancer types using UK Biobank whole-exome sequencing data.

Am J Hum Genet

March 2025

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.

Genome-wide association studies have been highly successful at identifying common variants associated with cancer; however, they do not explain all the inherited risks of cancer. Family-based studies, targeted sequencing, and, more recently, exome-wide association studies have identified rare coding variants in some genes associated with cancer risk, but the overall contribution of these variants to the heritability of cancer is less clear. Here, we describe a method to estimate the genome-wide contribution of rare coding variants to heritability that fits models to the burden effect sizes using an empirical Bayesian approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!