Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
BMC Genomics
Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
Published: February 2025
Background: Cattle have evolved genetic adaptations to a diverse range of agroecological zones, such as plateaus and arid zones. However, little is known about its genetic basis of adaptation to harsh environments within a short period of time after domestication. Here, we analyzed whole-genome sequence data from three indigenous cattle breeds (Anxi, Qaidam and Zhangmu) in northwest China and five worldwide cattle breeds (Angus, Holstein, Jersey, Gir and N'Dama) to explore their genetic composition and identify selective sweeps in the Chinese cattle breeds.
Results: Analyses of phylogenetic and population structure revealed that three indigenous cattle breeds share genomic components from Bos taurus and Bos indicus. A novel set of candidate genes was identified through comparative genomic analyses of cattle from contrasting environments based on SNP and copy number variation (CNV) data. These candidate genes are potentially associated with adaptive phenotypes, including high-altitude adaptability (e.g., ANGPT1, PPARGC1A, RORA), cold climate adaptation (e.g., TSHR, PRKG, OXCT1), and dryland adaptation (e.g., PLEKHA7, NFATC1, PLCB1).
Conclusions: This study unravels the unique adaptive diversity of three Chinese indigenous cattle breeds, providing a valuable resource for future research on sustainable livestock breeding strategies to response to climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871715 | PMC |
http://dx.doi.org/10.1186/s12864-025-11328-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.