Purpose: Hypochlorite-based formulations are widely used for surface disinfection. However, the efficacy of hypochlorite against spore-forming bacteria varies significantly in the literature. Although neutral or low pH hypochlorite solutions are effective sporicides due to the formation of hypochlorous acid (HOCl), their optimal conditions and the specific role of pH in disinfection remain unclear. These conditions also increase the solution's corrosiveness and compromise its shelf life. Therefore, further research is needed to identify the pH conditions that balance solution stability and effective hypochlorite-based spore disinfection.
Results: This study investigates the impact of neutral to alkaline pH on the sporicidal efficiency of hypochlorite against a pathogenic Bacillus cereus strain. We apply a 5,000 ppm hypochlorite formulation for 10-min across a pH range of 7.0-12.0, simulating common surface decontamination practices. Our results demonstrate that hypochlorite is largely ineffective at pH levels above 11.0, showing less than 1-log reduction in spore viability. However, there is a significant increase in sporicidal efficiency between pH 11.0 and 9.5, with a 4-log reduction in viability. This pH level corresponds to 2 - 55 ppm of the HOCl ionic form of hypochlorite. Further reduction in pH slightly improves the disinfection efficacy. However, the shelf life of hypochlorite solution decreases exponentially below pH 8.5. To explore the pH-dependent efficacy of hypochlorite, Raman spectroscopy and fluorescence imaging were used to investigate the biochemical mechanisms of spore decontamination. Results showed that lower pH enhances spore permeability and promotes calcium dipicolinic acid (CaDPA) release from the core.
Conclusion: Our results highlight the complex relationship between pH, sporicidal efficacy of hypochlorite, and its shelf life. While lower pH enhances the sporicidal efficiency, it compromises the solution's shelf life. A pH of 9.5 offers a balance, significantly improving shelf life compared to previously suggested pH ranges 7.0-8.0 while maintaining effective spore inactivation. Our findings challenge the common practice of diluting sodium hypochlorite with water to a 5,000 ppm solution, as this highly alkaline solution (pH of 11.9), is insufficient for eliminating B. cereus spores, even after a 10-min exposure. These findings are critical for improving disinfection practices, highlighting the importance of optimizing sodium hypochlorite effectiveness through pH adjustments before application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869716 | PMC |
http://dx.doi.org/10.1186/s12866-025-03831-w | DOI Listing |
Int J Biol Macromol
March 2025
Department of Food Science and Technology, Islamic Azad University, Tehran, Iran. Electronic address:
This study investigates developing and characterizing electrospun nanofibers composed of polyvinyl alcohol (PVA) and oxidized xanthan gum (OXG), with nisin as a bioactive agent, for innovative food packaging applications. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed successful crosslinking between PVA and OXG, along with uniform nisin dispersion within the fibers. The inclusion of OXG increased moisture content (MC) and water solubility (WS) while reducing porosity and water vapor permeability (WVP), demonstrating its role as a crosslinker.
View Article and Find Full Text PDFChembiochem
March 2025
National Institute of Genetic Engineering and Biotechnology, Bioprocess Engineering, Tehran, 0098, Tehran, IRAN (ISLAMIC REPUBLIC OF).
Protein modification/immobilization has been introduced as a large toolbox for creating a myriad of engineered proteins with profound implications for various scientific and industrial applications. Proteins immobilization techniques are generally performed through protein fixation in/to heterogeneous materials or via inter cross-linking of protein molecules, enabling the development of biocatalysts, biosensors, and drug delivery systems. On the other hand, chemical modification of proteins offers tailored changes in their functionality, enhances protein performance, extends their shelf life, and enables their specific binding interactions.
View Article and Find Full Text PDFJ AOAC Int
March 2025
R-Biopharm AG, An der Neuen Bergstr. 17, 64297 Darmstadt, Germany.
Background: Produced naturally by lactic acid bacteria, L-lactic acid is found in many fermented milk products and also in pickled vegetables, cured meats and fish. It serves as a quality parameter in wine, beer, whole egg, whole egg powder, and juices.
Objective: To validate the performance of the Enzytec™ Liquid L-Lactic acid for the determination of L-lactic acid in food and beverages such as milk and (fermented) milk products, fermented vegetable products, wines, beer, fruit and vegetable juices, egg and egg powder.
The study evaluated the effects of chitosan coating combined with Orange () essential oil (OEO) and potassium permanganate (KMnO) sachets as ethylene inhibitors on maintaining quality and extending the shelf-life of Ercolini pears. Additionally, it examined the reduction of superficial scalding in pears stored at 25°C ± 2°C. for 14 days.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China; School of Life and Health, Hainan University, Haikou 570228, PR China. Electronic address:
Mango (Mangifera indica L.), a climacteric fruit, undergoes rapid ripening driven by ethylene signaling, which plays a crucial role in modulating ascorbic acid (AsA) metabolism. AsA biosynthesis is primarily governed by the L-galactose pathway, with GDP-L-galactose phosphorylase (MiGalDH) catalyzing a key step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!