Acute and chronic gene expression activation following medial forebrain bundle DBS and selective dopamine pathway stimulation.

Sci Rep

Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Freiburg - Medical Centre, Breisacher Str. 64, 79106, Freiburg, Germany.

Published: February 2025

Deep brain stimulation (DBS) of the medial forebrain bundle (mfb) demonstrated anti-depressant effects both clinically and experimentally. Modulation of mesocorticolimbic dopaminergic (DA) activity could contribute-in part-to the therapeutic effects. By comparing selective and pathway specific midbrain DA optogenetic stimulation with the global, non-pathway specific mfb-DBS, the study explored changes in gene-expression of key biomarkers associated with neurocircuitry of depression. Rats received either optogenetic DAergic or mfb-DBS, delivered as acute/single or chronic/repeated stimulation. Micro-dissected regions were prepared for in situ hybridization targeting biomarkers of GABAergic, glutamatergic, and dopaminergic systems. Mfb-DBS mediated DA independent pathway increased GABAergic biomarkers (GABAA, GAD1) in frontal and accumbal regions, not in midbrain. The combinations of low frequency/high pulse width and high frequency/low pulse width stimulation generally increased biomarker expression similarly, but chronic/repetitive stimulation had no accumulative effect. Interestingly, unilateral stimulation had bilateral effects, but stimulation modalities had little impact on DAT and Vglut2 expression. In conclusion, both low and high frequency, acute/single and chronic/repetitive mfb-DBS-but not selective optogenetic stimulation -activated gene expression of biomarkers associated with GABAergic transmission. The increased expression was transitory and less chronic than predicted. Importantly, the study provides evidence that the anti-depressant therapeutic effects of clinical medial forebrain bundle DBS occurs-in part-be via modulation of GABAergic signalling which in turn could regulate the release of dopamine in frontal and accumbal regions. In addition, clinical implication of the data is that unilateral stimulation had bilateral consequences on the gene expression, although the physiological and functional sequelae of this are yet unknown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871370PMC
http://dx.doi.org/10.1038/s41598-025-91994-xDOI Listing

Publication Analysis

Top Keywords

gene expression
12
medial forebrain
12
forebrain bundle
12
stimulation
10
bundle dbs
8
therapeutic effects
8
optogenetic stimulation
8
biomarkers associated
8
frontal accumbal
8
accumbal regions
8

Similar Publications

Semiautomated Production of Cell-Free Biosensors.

ACS Synth Biol

March 2025

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Cell-free synthetic biology biosensors have potential as effective diagnostic technologies for the detection of chemical compounds, such as toxins and human health biomarkers. They have several advantages over conventional laboratory-based diagnostic approaches, including the ability to be assembled, freeze-dried, distributed, and then used at the point of need. This makes them an attractive platform for cheap and rapid chemical detection across the globe.

View Article and Find Full Text PDF

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Females remain underrepresented in opioid use disorder (OUD) research, particularly regarding dorsal striatal neuroadaptations. Chaperonins seem to play a role in opioid-induced neural plasticity, yet their contribution to OUD-related changes in the dorsal striatum (DS) remains poorly understood. Given known sex differences in opioid sensitivity, it is important to determine how chaperonin expression contributes to OUD-related adaptations in females.

View Article and Find Full Text PDF

Motivation: Computational models are crucial for addressing critical questions about systems evolution and deciphering system connections. The pivotal feature of making this concept recognisable from the biological and clinical community is the possibility of quickly inspecting the whole system, bearing in mind the different granularity levels of its components. This holistic view of system behaviour expands the evolution study by identifying the heterogeneous behaviours applicable, for example, to the cancer evolution study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!