The accuracy of protein synthesis and its relation to ageing has been of long-standing interest. To study whether spontaneous changes in the rate of ribosomal error occur as a function of age, we first determined that stop-codon readthrough is a more sensitive read-out of mistranslation due to codon-anticodon mispairing than missense amino acid incorporation. Subsequently, we developed knock-in mice for in-vivo detection of stop-codon readthrough using a gain-of-function Kat2-TGA-Fluc readthrough reporter which combines fluorescent and sensitive bioluminescent imaging techniques. We followed expression of reporter proteins in-vivo over time, and assessed Kat2 and Fluc expression in tissue extracts and by whole organ ex-vivo imaging. Collectively, our results provide evidence for an organ-dependent, age-related increase in translational error: stop-codon readthrough increases with age in muscle (+ 75%, p < 0.001) and brain (+ 50%, p < 0.01), but not in liver (p > 0.5). Together with recent data demonstrating premature ageing in mice with an error-prone ram mutation, our findings highlight age-related decline of translation fidelity as a possible contributor to ageing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871305PMC
http://dx.doi.org/10.1038/s41467-025-57203-zDOI Listing

Publication Analysis

Top Keywords

stop-codon readthrough
12
translational error
8
error mice
4
mice increases
4
increases ageing
4
ageing organ-dependent
4
organ-dependent manner
4
manner accuracy
4
accuracy protein
4
protein synthesis
4

Similar Publications

Dual reporters encoding two distinct proteins within the same mRNA have had a crucial role in identifying and characterizing unconventional mechanisms of eukaryotic translation. These mechanisms include initiation via internal ribosomal entry sites (IRESs), ribosomal frameshifting, stop codon readthrough and reinitiation. This design enables the expression of one reporter to be influenced by the specific mechanism under investigation, while the other reporter serves as an internal control.

View Article and Find Full Text PDF

The accuracy of protein synthesis and its relation to ageing has been of long-standing interest. To study whether spontaneous changes in the rate of ribosomal error occur as a function of age, we first determined that stop-codon readthrough is a more sensitive read-out of mistranslation due to codon-anticodon mispairing than missense amino acid incorporation. Subsequently, we developed knock-in mice for in-vivo detection of stop-codon readthrough using a gain-of-function Kat2-TGA-Fluc readthrough reporter which combines fluorescent and sensitive bioluminescent imaging techniques.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue.

View Article and Find Full Text PDF

Engineered tRNAs efficiently suppress CDKL5 premature termination codons.

Sci Rep

December 2024

Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy.

Article Synopsis
  • The CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental condition with symptoms including early epilepsy, intellectual disabilities, and motor/visual dysfunction, caused by mutations in the CDKL5 gene.
  • Currently, there is no cure for CDD; treatments focus on managing seizures, though some genetic therapies show promise in addressing the disorder's root causes.
  • Recent studies using Anticodon-edited tRNAs (ACE-tRNAs) have shown potential in restoring full-length CDKL5 protein synthesis, opening up possibilities for effective new treatments for patients with nonsense mutations.
View Article and Find Full Text PDF

Eukaryotic translation release factor eRF1 is an important cellular protein that plays a key role in translation termination, nonsense-mediated mRNA decay (NMD), and readthrough of stop codons. The amount of eRF1 in the cell influences all these processes. The mechanism of regulation of eRF1 translation through an autoregulatory NMD-dependent expression circuit has been described for plants and fungi, but the mechanisms of regulation of human eRF1 translation have not yet been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!