Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ibudilast (IBD) is a relatively nonselective inhibitor of phosphodiesterase, commonly used for treating asthma, progressive multiple sclerosis and other neuropathological pain conditions. Although IBD was considered safe and harmless to human health, its clinical use might be associated with reported increases of serum AST and ALT as well as liver weight. However, the mechanisms behind such liver injury are still unknown. The purpose of this work was to investigate metabolic activation of IBD and to define correlation between bioactivation and hepatotoxicity of IBD. Two oxidative metabolites, IBD-derived glutathione (GSH) conjugates (M1, M2), N-acetyl-L-cysteine (NAC) conjugates (M3, M4), and cysteine (Cys) conjugates (M5, M6) were detected in mouse liver microsomes fortified with IBD (100 μM) and trapping agents GSH, NAC, or Cys, respectively, and two GSH conjugates (M1 and M2), one NAC conjugate (M4) and one Cys conjugate (M5) were detected. Similar observation was obtained in human liver microsomal incubations. The formation of M1-M6 was NADPH-dependent. Moreover, biliary GSH conjugates and urinary NAC conjugates derived from IBD were detected in mice given IBD intragastrically at 100 mg/kg. The metabolism study suggested the formation of an epoxide intermediate. In addition, the epoxide intermediate was found to react with cysteine residues of hepatic protein in a dose-dependent manner. Further studies indicate that CYP3A4 dominated the metabolic activation of IBD. Exposure of primary hepatocytes to IBD resulted in decreased cell survival. Pretreatment of mice hepatocytes with ketoconazole attenuated the susceptibility to the cytotoxicity of IBD (25-400 μM). The reactive epoxide intermediate might correlate the hepatotoxicity induced by IBD. This work revealed the reactive epoxide intermediate might correlate the hepatotoxicity induced by IBD, and would provide new insights into the mechanisms behind the adverse reactions taking place in clinical use of IBD, especially for the reported liver injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-025-03995-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!