Urban water bodies serve as critical reservoirs of microbial diversity, with major implications for public health and environmental quality. This study aimed to characterize the microbial diversity of surface waters and wastewater from the Pasto River in the Colombian Andean Highlands, offering insights that may support water quality monitoring efforts. Sampling was conducted at three river sites and one wastewater location. Standard physicochemical and microbiological analyses were performed, including real-time PCR to detect protozoan pathogens Giardia spp. and Cryptosporidium spp. Metagenomic sequencing provided an in-depth taxonomic and functional profile of microbial communities through two complementary approaches: (i) read-based analysis to identify abundant families and species, both pathogenic and beneficial, and (ii) detection of health-related molecular markers, including antimicrobial resistance markers and virulence factors. Physicochemical analyses showed distinct profiles between wastewater and surface water, with wastewater exhibiting elevated levels of suspended solids (113.6 mg/L), biochemical oxygen demand (BOD, 311.2 mg/L), and chemical oxygen demand (COD, 426.7 mg/L). Real-time PCR detected Giardia spp. DNA in 75% (76/102) of the samples and Cryptosporidium spp. DNA in 94% (96/102) of samples. The metagenomic read-based profiling identified Aeromonas media as a prevalent pathogen and Polaromonas naphthalenivorans as a potential biodegradative agent. The metagenomic assembly produced 270 high-quality genomes, revealing 16 bacterial species (e. g., Acinetobacter johnsonii and Megamonas funiformis) that provided insights into fecal contaminants and native aquatic microbes. Functional profiling further revealed a high prevalence of antimicrobial resistance markers, particularly for tetracyclines, aminoglycosides, and macrolides, with the highest abundance found in wastewater samples. Additionally, virulence factors were notably present in Zoogloea ramigera. The findings underscore the value of metagenomic profiling as a comprehensive tool for water quality monitoring, facilitating the detection of pathogens, beneficial species, and molecular markers indicative of potential health risks. This approach supports continuous monitoring efforts, offering actionable data for water management strategies to safeguard public health and maintain ecological integrity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870934 | PMC |
http://dx.doi.org/10.1007/s00284-024-04019-7 | DOI Listing |
Nanomaterials (Basel)
March 2025
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The formation of ice due to global climate change poses challenges across multiple industries. Traditional anti-icing technologies often suffer from low efficiency, high energy consumption, and environmental pollution. Photothermal and hydrophobic surfaces with nano-micro structures (PHS-NMSs) offer innovative solutions to these challenges due to their exceptional optical absorption, heat conversion capabilities, and unique surface water hydrophobic characteristics.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Deparment of Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
Hydrated anatase (101) titanium dioxide surfaces with oxygen vacancies have been studied using a combination of classical and ab initio molecular dynamics simulations. The reactivity of surface oxygen vacancies was investigated using ab initio calculations, showing that water molecules quickly adsorb to oxygen vacancy sites upon hydration. The oxygen vacancy then quickly reacts with the adsorbed water, forming a protonated bridging oxygen atom at the vacancy site and at a neighboring oxygen bridge.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China.
In this study, a CeO/attapulgite (ATP) composite was synthesized via a straightforward hydrothermal method to efficiently remove excess fluoride from water. The structural and surface properties of the synthesized adsorbent were systematically characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The fluoride adsorption capacity of the CeO/ATP composite was systematically evaluated, reaching a maximum of 47.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
In this paper, a novel robust TFPA-TTA-COF coating with nano pores was grafted to the gully-like surface of stainless steel fibers (GS-SSF). The GS-SSF were prepared using a two-step electrochemical etching method, and the covalent organic framework (COF) TFPA-TTA-COF coating was chemically bonded to the gully-like surface via in situ growth. The prepared metal fibers were applied as the headspace solid-phase microextraction (HS-SPME) fibers and combined with gas chromatography (GC) to develop a detection method for phenolic compounds (PCs) in water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!