SARM1 Modulates calcium influx in secondary brain injury after experimental Intracerebral hemorrhage.

Neuroscience

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006 China; Institute of Stroke Research, Soochow University, Suzhou 215006, China. Electronic address:

Published: February 2025

Intracerebral hemorrhage (ICH), defined as spontaneous bleeding within brain tissue, is associated with high mortality and severe disability, often resulting in poor clinical outcomes. Early intervention to mitigate secondary brain injury is critical for neuronal protection. Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1), a member of the MyD88 family, is predominantly expressed in neurons, where it localizes to the outer membrane of mitochondria. Under physiological conditions, SARM1 is expressed at low levels; however, its expression increases following injury, resulting in excessive NAD hydrolysis. While NAD degradation products can influence calcium channels, their role in calcium regulation after ICH remains unclear. This study established an in vivo ICH model in adult SD rats via autologous blood injection into the basal ganglia and validated the findings using an in vitro model of primary neurons treated with oxyhemoglobin. SARM1 knockdown was achieved using a lentiviral vector. Following ICH, SARM1 expression significantly increased and colocalized with the neuronal marker NeuN. SARM1 knockdown reduced both SARM1 and mitochondrial calcium uniporter (MCU) expression, decreased NAD degradation, and attenuated neuronal death. Behavioral assessments demonstrated improved short- and long-term neurological outcomes in SARM1-knockdown rats compared with the lentiviral vector group. In in vitro experiments, Rhod-2 staining revealed reduced mitochondrial calcium levels, while TMRM staining indicated decreased mitochondrial membrane potential loss. Additionally, Hoechst staining showed reduced neuronal mitochondrial death following SARM1 downregulation. These findings suggest that targeting SARM1 may enhance neurological recovery and represents a potential therapeutic strategy for early intervention in secondary brain injury following ICH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2025.02.052DOI Listing

Publication Analysis

Top Keywords

secondary brain
12
brain injury
12
sarm1
9
intracerebral hemorrhage
8
early intervention
8
nad degradation
8
sarm1 knockdown
8
lentiviral vector
8
mitochondrial calcium
8
calcium
5

Similar Publications

Background And Objectives: Medical clearance for return to play (RTP) after sports-related concussion is based on clinical assessment. It is unknown whether brain physiology has entirely returned to preinjury baseline at the time of clearance. In this longitudinal study, we assessed whether concussed individuals show functional and structural MRI brain changes relative to preinjury levels that persist beyond medical clearance.

View Article and Find Full Text PDF

Itaconate restrains acute proinflammatory activation of microglia MG after traumatic brain injury in mice.

Sci Transl Med

March 2025

Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.

Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 ()], is a pivotal metabolic regulator in immune cells, particularly in macrophages.

View Article and Find Full Text PDF

Microfluidic isolation and release of live disseminated breast tumor cells in bone marrow.

PLoS One

March 2025

Department of Mechanical and Aerospace Engineering, Interdisciplinary Microsystems Group, Gainesville, Florida, United States of America.

Breast cancer represents a significant therapeutic challenge due to its aggressive nature and resistance to treatment. A major cause of treatment failure in breast cancer is the presence of rare, low-proliferative disseminated tumor cells (DTCs) in distant organs including the bone marrow. This study introduced a microfluidic-based approach to improve the immunodetection and isolation of these rare DTCs for downstream analysis, with an emphasis on optimizing immunocapture, release, and enrichment methods of live DTCs as compared to the standard approach for blood-borne circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Background: The relationship between assisted reproductive technology (ART) and childhood cancer risk has been widely debated. Previous meta-analyses did not adequately account for the impact of infertility, and this study addresses this gap.

Objective: Our primary objective was to assess the relative risk (RR) of childhood cancer in infertile populations using ART versus non-ART offspring, with a secondary focus on comparing frozen embryo transfer (FET) and fresh embryo transfer (fresh-ET).

View Article and Find Full Text PDF

Background: Multimodal neuromonitoring (MMM) aids early detection of secondary brain injury in neurointensive care and facilitates research in pathophysiologic mechanisms of the injured brain. Invasive ICP monitoring has been the gold standard for decades, however additional methods exist (aMMM). It was hypothesized that local practices regarding aMMM vary considerably and that inter-and intracenter consensus is low.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!