Zein and resveratrol Schiff base nanocomplexes: An efficient delivery system to enhance the antibacterial efficacy of berberine.

Int J Biol Macromol

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

Published: February 2025

Plant-derived bactericides with limited drug resistance and environmental friendliness are promising alternatives to traditional chemical bactericides. Berberine (BBR) is a natural product with excellent biological activity against bacteria. Novel pesticide delivery systems were designed and constructed based on the plant-derived zein resveratrol (RSV) and its derivative 4-((E)-((2-hydroxyphenyl)imino)methyl)-5-((E)-4-hydroxystyryl)benzene-1,3-diol (XF) to improve the efficacy of BBR. BBR@Zein-RSV and BBR@Zein-XF nanoparticles (NPs) had uniform dispersion and were approximately 119.19 and 86.82 nm, with encapsulation rates of 55.71 % and 83.34 %, respectively. BBR@Zein-RSV and BBR@Zein-XF NPs used dual pH and redox reaction mechanisms to achieve a controlled release into the environment. Especially, BBR@Zein-XF NPs exhibited antibacterial activity against Xanthomonas oryzae pv. oryzicola with an EC value of 0.98 mg/L. Additionally, it showed excellent protective (51.52 %) and curative (48.17 %) effects against rice bacterial leaf streaks. NPs could inhibit biofilm formation and extracellular polysaccharide production but promote reactive oxygen species levels, thereby destroying the integrity of bacteria and eventually leading to cell death. Proteomic analysis revealed that BBR@Zein-XF NPs regulated the expression of phosphoenolpyruvate carboxykinase and lactoylglutathione lyase, thereby influencing plant growth, energy metabolism, and maintaining a normal redox state. This study provides new ideas for extensively utilizing plant-derived antibacterial agents by developing innovative and eco-friendly nano-pesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141496DOI Listing

Publication Analysis

Top Keywords

bbr@zein-xf nps
12
zein resveratrol
8
bbr@zein-rsv bbr@zein-xf
8
nps
5
resveratrol schiff
4
schiff base
4
base nanocomplexes
4
nanocomplexes efficient
4
efficient delivery
4
delivery system
4

Similar Publications

Molecular Engineering of a SICTERS Small Molecule with Superior Raman Imaging and Photothermal Performance.

J Am Chem Soc

March 2025

Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.

View Article and Find Full Text PDF

Nanoparticle-Based Pulmonary Immune Engineering.

Annu Rev Chem Biomol Eng

March 2025

1Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; email:

Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense.

View Article and Find Full Text PDF

Erbium oxide nanoparticles (ErO-NPs) have attracted significant attention for their unique physicochemical properties, including high surface area, biocompatibility, and stability. However, the impact of ErO-NPs on lymphoma cells (LCs) has not been explored, making this an innovative avenue for exploration. Therefore, the current study aimed to explore the influence of ErO-NPs on cell viability, genomic and mitochondrial DNA integrity, reactive oxygen species (ROS) generation and apoptosis induction in human U937 LCs.

View Article and Find Full Text PDF

To achieve an intimate contact between neuronal cells and the electrode in non-invasive platforms intended for neurological research, in this study, we fabricated a raised-type Au multi-electrode array (MEA) by employing nanoscale-thick indium-tin oxide (ITO; 50 nm) as a track layer and plasma-enhanced atomic layer-deposited (PEALD) AlO (30-60 nm) and HfO (20 nm) as passivation layers. The PEALD AlO-passivated Au MEA was subsequently modified with electrodeposited AuPt nanoparticles (NPs) and IrO to demonstrate the passivation capability and chemical resistance of AlO to Au-, Pt-, and IrO NP-containing electrolytes. AlO-passivated and IrO/AuPt-modified MEAs could resolve optogenetically activated spikes and spontaneous activities with a root-mean-square noise level of 2.

View Article and Find Full Text PDF

Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!