Phys Med
Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, USA. Electronic address:
Published: March 2025
Diffusing alpha-emitting Radiation Therapy (DaRT) is a cancer treatment currently undergoing clinical trials. DaRT utilizes localized 224-Radium (Ra) seeds to deliver high linear energy transfer (LET) alpha radiation. Its main advantage over other alpha radiation treatments is that the diffusion of Ra decay chain products allows for a more spatially distributed dose. In silico models are used to simulate the physical dynamics of DaRT and the diffusion of DaRT progeny radionuclides into cancer tissue. These models mostly rely on physical principles, often neglecting biochemical interactions with the tumor microenvironment (TME), which affect DaRT dosimetry in human cancer tissue. Here, we address this gap by reviewing how the daughter isotope 212-Lead (Pb) interacts with chemically heterogeneous TMEs during DaRT treatments. Pb is given special attention due to its high physiological activity and long half-life compared to other DaRT radionuclides. By investigating Pb-binding molecules in the TME and their molecular dynamics, we aim to highlight key biochemical processes to be considered by computational models. We identify several species with prevalent roles in cancer tissue as possible binding partners with Pb. These species include Glutathione (GSH), Metallothioneins (MTs), Calmodulin (CaM), and Human Serum Albumin (HSA). GSH, MTs, CaM, and HSA were selected based on their known ability to bind to Pb and their concentration in cancer tissue and were examined for their variability in diverse TMEs. Ultimately, this article seeks to guide future research by providing a basic framework of molecular species important for the accurate simulation of DaRT within the TME.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2025.104947 | DOI Listing |
Cancer Discov
March 2025
University of California, San Francisco, San Francisco, CA, United States.
Historical studies performed nearly a century ago using mouse skin models identified two key steps in cancer evolution: initiation, a likely mutational event, and promotion, driven by inflammation and cell proliferation. Initiation was proposed to be permanent, with promotion as the critical rate-limiting step for cancer development. Here, we carried out whole genome sequencing to demonstrate that initiated cells with thousands of mutagen-induced mutations can persist for long periods and are not removed by cell competition or by immune intervention, thus mimicking the persistence of cells with cancer driver mutations in normal human tissues.
View Article and Find Full Text PDFOncotarget
March 2025
Worldwide Innovative Network (WIN) Association - WIN Consortium, Chevilly-Larue, France.
The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology.
View Article and Find Full Text PDFSci Adv
March 2025
School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China.
Intrabronchial delivery of therapeutic agents is critical to the treatment of respiratory diseases. Targeted delivery is demanded because of the off-target accumulation of drugs in normal lung tissues caused by inhalation and the limited motion dexterity of clinical bronchoscopes in tortuous bronchial trees. Herein, we developed microrobotic swarms consisting of magnetic hydrogel microparticles to achieve intrabronchial targeted delivery.
View Article and Find Full Text PDFJ Immunol
February 2025
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
Endometriosis is a chronic disorder in which endometrial-like tissue presents outside the uterus. Patients with endometriosis have been shown to exhibit aberrant immune responses within the lesion microenvironment and in circulation which contribute to the development of endometriosis. Thymic stromal lymphopoietin (TSLP) is an alarmin involved in cell proliferation and the induction of T helper 2 (Th2) inflammation in various diseases, such as asthma, atopic dermatitis, and pancreatic and breast cancer.
View Article and Find Full Text PDFJ Immunol
March 2025
Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
Macrophage differentiation, phenotype, and function have been assessed extensively in vitro by predominantly deriving human macrophages from peripheral blood. It is accepted that there are differences between macrophages isolated from different human tissues; however, the importance of anatomical source for in vitro differentiation and characterization is less clear. Here, phenotype and function were evaluated between human macrophages derived from bone marrow or peripheral blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.