Background: Despite the importance of vaccination- and infection-elicited antibodies (Abs) to SARS-CoV-2 immunity, current mouse models do not fully capture the dynamics of Ab-mediated immunity in vivo, including potential contributions of the neonatal Fc receptor, encoded by FCGRT.

Methods: We generated triple knock-in (TKI) mice expressing human ACE2, TMPRSS2, and FCGRT; and evaluated the protective efficacy of anti-SARS-CoV-2 monoclonal Abs (mAbs) and plasma from individuals with immunity elicited by vaccination alone plus SARS-CoV-2 infection-induced (hybrid) immunity.

Findings: A human anti-SARS-CoV-2 mAb harbouring a half-life-extending mutation, but not the wild-type mAb, exhibited prolonged half-life in TKI mice and protected against lung infection with Omicron BA.2, validating the utility of these mice for evaluating therapeutic Abs. Pooled plasma from individuals with hybrid immunity to Delta, but not from vaccinated-only individuals, cleared infectious Delta from the lungs of TKI mice (P < 0.01), even though the two plasma pools had similar Delta-binding and -neutralising Ab titres in vitro. Similarly, plasma from individuals with hybrid Omicron BA.1/2 immunity, but not hybrid Delta immunity, decreased lung infection (P < 0.05) with BA.5 in TKI mice, despite the plasma pools having comparable BA.5-binding and -neutralising titres in vitro. Depletion of receptor-binding domain-targeting Abs from hybrid immune plasma abrogated their protection against infection.

Interpretation: These results demonstrate the utility of TKI mice as a tool for the development of anti-SARS-CoV-2 mAb therapeutics, show that in vitro neutralisation assays do not accurately predict in vivo protection, and highlight the importance of hybrid immunity for eliciting protective anti-receptor-binding domain Abs.

Funding: This work was funded by grants from the e-Asia Joint Research Program (N10A650706 and N10A660577 to MLM, in collaboration with SS); the NIH (U19 AI142790-02S1 to EOS and SS and R44 AI157900 to KJ); the GHR Foundation (to SS and EOS); the Overton family (to SS and EOS); the Arvin Gottlieb Foundation (to SS and EOS), the Prebys Foundation (to SS); and the American Association of Immunologists Fellowship Program for Career Reentry (to FASB).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2025.105619DOI Listing

Publication Analysis

Top Keywords

tki mice
12
ace2 tmprss2
8
tmprss2 fcgrt
8
protective efficacy
8
hybrid immunity
8
plasma individuals
8
immunity
5
humanised ace2
4
fcgrt mouse
4
mouse model
4

Similar Publications

A humanised ACE2, TMPRSS2, and FCGRT mouse model reveals the protective efficacy of anti-receptor binding domain antibodies elicited by SARS-CoV-2 hybrid immunity.

EBioMedicine

February 2025

Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA. Electronic address:

Background: Despite the importance of vaccination- and infection-elicited antibodies (Abs) to SARS-CoV-2 immunity, current mouse models do not fully capture the dynamics of Ab-mediated immunity in vivo, including potential contributions of the neonatal Fc receptor, encoded by FCGRT.

Methods: We generated triple knock-in (TKI) mice expressing human ACE2, TMPRSS2, and FCGRT; and evaluated the protective efficacy of anti-SARS-CoV-2 monoclonal Abs (mAbs) and plasma from individuals with immunity elicited by vaccination alone plus SARS-CoV-2 infection-induced (hybrid) immunity.

Findings: A human anti-SARS-CoV-2 mAb harbouring a half-life-extending mutation, but not the wild-type mAb, exhibited prolonged half-life in TKI mice and protected against lung infection with Omicron BA.

View Article and Find Full Text PDF

Cerebellar control of targeted tongue movements.

J Physiol

March 2025

Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.

The cerebellum is critical for coordinating movements related to eating, drinking and swallowing, all of which require proper control of the tongue. Cerebellar Purkinje cells can encode tongue movements, but it is unclear how their simple spikes and complex spikes induce changes in the shape of the tongue that contribute to goal-directed movements. To study these relations, we recorded and stimulated Purkinje cells in the vermis and hemispheres of mice during spontaneous licking from a stationary or moving water spout.

View Article and Find Full Text PDF

Recently, immune checkpoint inhibitors (ICIs) and cabozantinib, a tyrosine kinase inhibitor (TKI), have been used to treat renal cell carcinoma (RCC); the combination of these agents has become a standard treatment for RCC. TKIs generally target vascular endothelial growth factor. However, cabozantinib is characterized by its targeting of MET.

View Article and Find Full Text PDF

EGFR tyrosine kinase inhibitor ZZC4 overcomes acquired resistance to gefitinib.

Toxicol Appl Pharmacol

April 2025

Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; College of Medicine, Xi'an International University, Xi'an 710077, Shaanxi, China. Electronic address:

Despite the tremendous progress of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) development, acquired resistance mechanisms have limited their efficacy in treating non-small cell lung cancer (NSCLC). To overcome these limitations, novel EGFR-TKIs are needed. In our previous study, we presented ZZC4 as a potent EGFR-TKI.

View Article and Find Full Text PDF

SMARCB1-driven EGFR-GLI1 epigenetic alterations in lung cancer progression and therapy are differentially modulated by MEOX2 and GLI-1.

Cancer Gene Ther

February 2025

Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México, (UNAM), Avenida de los Barrios #1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz, México.

Lung cancer remains the leading cause of cancer-related mortality globally, with genes such as SMARCB1, MEOX2, and GLI-1 playing significant roles in its malignancy. Despite their known involvement, the specific molecular contributions of these genes to lung cancer progression, particularly their effects on epigenetic modifications on oncogenes sequences as EGFR and GLI-1, and their influence in the response to EGFR-TKI-based therapies, have not been fully explored. Our study reveals how MEOX2 and GLI-1 are key molecular modulators of the GLI-1 and EGFR-epigenetic patterns, which in turn transcriptionally and epigenetically affect EGFR gene expression in lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!