Approximately 30% of patients with myelodysplastic syndrome (MDS) progress to secondary acute myeloid leukemia (sAML) via accumulating gene mutations. Genomic analyses reveal a complex interplay among mutant genes, with co-occurring and mutually exclusive patterns. Hyperactivation of c-MYB and deficiency of PU.1 have been linked to myeloid disorders. We report a case of AML with concurrent and mutations, exhibiting early onset, high blast count, chemo-resistance, indicating high-risk features, along with elevated Pelger-Huët anomaly (PHA). However, the synergistic mechanism of and in sAML remains unclear. Using c-Myb-hyperactivation and Pu.1-deficient double-strain () zebrafish, we investigated MDS/sAML progression. Surprisingly, the double mutant exhibited a distinct type of neutrophil resembling clinical PHA cells and demonstrated a higher rate of MDS/sAML transformation. Further expression analysis revealed reduced expression in double-mutant zebrafish. Knockdown of resulted in PHA and increased blast cells, while overexpression of in reduced PHA cell level. This suggests that c-Myb hyperactivation and Pu.1 deficiency synergistically reduce expression, inducing the development of PHA-like neutrophils and promoting MDS/sAML progression in zebrafish. Moreover, coadministration of cell cycle inhibitor cytarabine (Ara-C) and the differential inducer all-trans retinoic acid (ATRA) could effectively relieve the neutrophil expansion and PHA symptoms in zebrafish. Our findings revealed that c-Myb hyperactivation and Pu.1 deficiency played a synergistic role in sAML development and suggests a phenotypic association between the emergence of PH-like cells and the transformation to sAML. Furthermore, zebrafish might serve as a suitable sAML model for drug screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892618 | PMC |
http://dx.doi.org/10.1073/pnas.2416121122 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
Approximately 30% of patients with myelodysplastic syndrome (MDS) progress to secondary acute myeloid leukemia (sAML) via accumulating gene mutations. Genomic analyses reveal a complex interplay among mutant genes, with co-occurring and mutually exclusive patterns. Hyperactivation of c-MYB and deficiency of PU.
View Article and Find Full Text PDFCancer Discov
November 2021
Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
In acute myeloid leukemia (AML) with inv(3)(q21;q26) or t(3;3)(q21;q26), a translocated enhancer drives oncogenic expression of . We generated an EVI1-GFP AML model and applied an unbiased CRISPR/Cas9 enhancer scan to uncover sequence motifs essential for transcription. Using this approach, we pinpointed a single regulatory element in the translocated enhancer that is critically required for aberrant expression.
View Article and Find Full Text PDFCancer Lett
August 2021
Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Faculty of Sciences, University of Adelaide, Adelaide, Australia; Australian Genomics Health Alliance (AGHA), Australia. Electronic address:
Activating TYK2-rearrangements have recently been identified and implicated in the leukemogenesis of high-risk acute lymphoblastic leukemia (HR-ALL) cases. Pre-clinical studies indicated the JAK/TYK2 inhibitor (JAKi), cerdulatinib, as a promising therapeutic against TYK2-rearranged ALL, attenuating the constitutive JAK/STAT signaling resulting from the TYK2 fusion protein. However, following a period of clinical efficacy, JAKi resistance often occurs resulting in relapse.
View Article and Find Full Text PDFLeukemia
March 2020
Institute of Physiological Chemistry, University of Ulm, Ulm, Germany.
In addition to oncogenic MYC translocations, Burkitt lymphoma (BL) depends on the germinal centre (GC) dark zone (DZ) B cell survival and proliferation programme, which is characterized by relatively low PI3K-AKT activity. Paradoxically, PI3K-AKT activation facilitates MYC-driven lymphomagenesis in mice, and it has been proposed that PI3K-AKT activation is essential for BL. Here we show that the PI3K-AKT activity in primary BLs and BL cell lines does not exceed that of human non-neoplastic tonsillar GC DZ B cells.
View Article and Find Full Text PDFCancer Res
July 2019
Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
Understanding the roles of noncoding RNAs (ncRNA) in tumorigenesis and metastasis would establish novel avenues to identify diagnostic and therapeutic targets. Here, we aimed to identify hepatocellular carcinoma (HCC)-specific ncRNA and to investigate their roles in hepatocarcinogenesis and metastasis. RNA-seq of xenografts generated by lung metastasis identified long noncoding RNA small nucleolar RNA host gene 10 (SNHG10) and its homolog SCARNA13 as novel drivers for the development and metastasis of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!