Thermal destruction is a critical cornerstone of addressing the rampant contamination of natural resources with per- and polyfluoroalkyl substances (PFAS). However, grave concerns associated with stack emissions from incineration exist because mechanistic studies have thus far relied on ex situ analyses of end products and theoretical calculations. Here, we used synchrotron-based vacuum ultraviolet photoionization mass spectrometry to study the pyrolysis of a representative PFAS-perfluorohexanoic acid-and provide direct evidence of fluorocarbon radicals and intermediates. A key reaction pathway from perfluorocarboxylic acids to ketenes via acyl fluorides is proposed. We furthermore propose CF/CF radical-centered pyrolysis mechanisms and explain their roles in the formation of other products that may form in full-scale incinerators. These results have not only unveiled the role of radicals and intermediates in thermal PFAS decomposition and recombination mechanisms but also provide unique insight into improving the safety and viability of industrial PFAS incineration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870085PMC
http://dx.doi.org/10.1126/sciadv.adt3363DOI Listing

Publication Analysis

Top Keywords

fluorocarbon radicals
8
thermal destruction
8
photoionization mass
8
mass spectrometry
8
radicals intermediates
8
direct measurement
4
measurement fluorocarbon
4
radicals thermal
4
destruction perfluorohexanoic
4
perfluorohexanoic acid
4

Similar Publications

Thermal destruction is a critical cornerstone of addressing the rampant contamination of natural resources with per- and polyfluoroalkyl substances (PFAS). However, grave concerns associated with stack emissions from incineration exist because mechanistic studies have thus far relied on ex situ analyses of end products and theoretical calculations. Here, we used synchrotron-based vacuum ultraviolet photoionization mass spectrometry to study the pyrolysis of a representative PFAS-perfluorohexanoic acid-and provide direct evidence of fluorocarbon radicals and intermediates.

View Article and Find Full Text PDF

Fluorine-fluorine interaction-driven colorimetric sensor for PFOA-sensitive detection using F-functionalized Ce-UiO-66-NH MOF with oxidase-like activity.

Mikrochim Acta

February 2025

Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.

A novel colorimetric sensor was designed for sensitive perfluorooctanoic acid (PFOA) detection based on a fluorine-functionalized Ce-metal-organic framework (F-Ce-UiO-66-NH) with oxidase-like activity, using 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate. This F-Ce-UiO-66-NH was synthesized through ligand exchange and post-modification with pentafluorobenzaldehyde (PFBA) on the basis of Ce-terephthalic acid (Ce-UiO-66), incorporating pentafluorophenyl groups that enhance the material's affinity for PFOA, leading to a more sensitive absorbance change in the presence of PFOA. Experimental and computational assays revealed that oxidase-like activity of F-Ce-UiO-66-NH primarily arises from hydroxyl radicals (•OH) generated through the conversion of superoxide radicals (•O).

View Article and Find Full Text PDF

Interpretation of negative-ion chemical ionization GC-MS and GC-MS/MS mass spectra of perfluorinated organic analyte derivatives: Consideration of reduction reactions in the gas phase.

J Chromatogr B Analyt Technol Biomed Life Sci

March 2025

Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany. Electronic address:

The main priniciples of gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) are: 1) separation of mostly derivatized analytes in the lumen of temperature-programmed gas chromatography (GC) fused-silica capillary columns, 2) ionization of gaseous charge-free analyte derivatives in the ion-source by means of electrons (electron ionization, EI) or in combination with a reagent gas such as methane (chemical ionization, CI), and 3) separation of simply ionized analytes or fragments in electric and/or magnetic fields due to their mass-to-charge ratio (m/z). EI generates (radical) cations, whereas CI is used to analyze either simply positively (positive-ion chemical ionization, PICI) or simply negatively charged analytes (negative-ion chemical ionization, NICI). In general, NICI in combination with the use of fluorinated (F) derivatization reagents is used in quantitative analyses as fluorinated analytes are softly ionized thus producing anions in high abundance and of high intensity.

View Article and Find Full Text PDF

The impact of anions on electrooxidation of perfluoroalkyl acids by porous Magnéli phase titanium suboxide anodes.

PLoS One

January 2025

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.

Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.

View Article and Find Full Text PDF

Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms.

Environ Sci Technol

January 2025

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.

At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!