A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HfZrO-based synaptic resistor circuit for a Super-Turing intelligent system. | LitMetric

HfZrO-based synaptic resistor circuit for a Super-Turing intelligent system.

Sci Adv

Departments of Materials Science and Engineering, Mechanical and Aerospace Engineering, Electrical and Computer Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Published: February 2025

Computers based on the Turing model execute artificial intelligence (AI) algorithms that are either programmed by humans or derived from machine learning. These AI algorithms cannot be modified during the operation process according to environmental changes, resulting in significantly poorer adaptability to new environments, longer learning latency, and higher power consumption compared to the human brain. In contrast, neurobiological circuits can function while simultaneously adapting to changing conditions. Here, we present a brain-inspired Super-Turing AI model based on a synaptic resistor circuit, capable of concurrent real-time inference and learning. Without any prior learning, a circuit of synaptic resistors integrating ferroelectric HfZrO materials was demonstrated to navigate a drone toward a target position while avoiding obstacles in a simulated environment, exhibiting significantly superior learning speed, performance, power consumption, and adaptability compared to computer-based artificial neural networks. Synaptic resistor circuits enable efficient and adaptive Super-Turing AI systems in uncertain and dynamic real-world environments.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.adr2082DOI Listing

Publication Analysis

Top Keywords

synaptic resistor
12
resistor circuit
8
power consumption
8
learning
5
hfzro-based synaptic
4
circuit super-turing
4
super-turing intelligent
4
intelligent system
4
system computers
4
computers based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!