Strong coupling between single qubits is crucial for quantum information science and quantum computation. However, it is still challenged, especially for single solid-state qubit. Here, we propose a hybrid quantum system, consisting of a coplanar waveguide (CPW) resonator weakly coupled to a single nitrogen-vacancy (NV) spin in diamond and an yttrium-iron-garnet (YIG) nanosphere holding Kerr magnons, to realize strong long-distance spin-spin coupling. With a strong driving field on magnons, the Kerr effect can squeeze magnons, and thus the coupling between the CPW resonator and the squeezed magnons is exponentially enhanced, which produces two cavity-magnon polaritons, i.e., the high-frequency polariton (HP) and the low-frequency polariton (LP). When the enhanced cavity-magnon coupling approaches the critical value (i.e., the frequency of the LP becomes zero), the spin is fully decoupled from the HP, while the coupling between the spin and the LP is significantly improved. In the dispersive regime, a strong spin-spin coupling mediated by the LP is achieved with accessible parameters. Our proposal indicates that the critical cavity-magnon polariton is a potential interface to realize strong spin-spin coupling and manipulates remote solid spins.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.545688DOI Listing

Publication Analysis

Top Keywords

spin-spin coupling
16
strong spin-spin
12
coupling
8
coupling strong
8
cpw resonator
8
realize strong
8
strong
6
cavity magnon-polariton
4
magnon-polariton interface
4
interface strong
4

Similar Publications

Indirect spin-spin couplings ("J-couplings") lead to well-known multiplet patterns in nuclear magnetic resonance (NMR) spectra that are also observable in non-decoupled solid-state NMR spectra, if the J-coupling constant exceeds the linewidth. Such J-multiplet line shapes in the solid state might however be affected by spin diffusion (SD) on the passive nuclei. When the SD rate constant is fast compared to the J-coupling constant, the multiplet resolution can be lost due to a so-called "self-decoupling" mechanism as has been already reported in the context of decoupling and for proton SD in solid adamantane.

View Article and Find Full Text PDF

Boosting selective CO reduction via strong spin-spin coupling on dual-atom spin-catalysts.

J Colloid Interface Sci

February 2025

State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

Achieving high selectivity in electrochemical conversion of carbon dioxide (CO) into valuable products remains a significant challenge. This study investigates the influence of spin states on dual-atom catalysts within two-dimensional metal-organic frameworks (2D-MOFs) and zero-dimensional molecular metal complexes (0D-MMCs), emphasizing their role in the selective electrocatalytic reduction of CO. Utilizing first-principles calculations, we systematically evaluate dual-atom spin-catalysts (DASCs) TMS(NH)(CH) 0D-MMC and TMS(NH)C 2D-MOF for CO reduction reactions (CORR) across various spin states: antiferromagnetic (AFM), ferromagnetic (FM), and non-magnetic (NM).

View Article and Find Full Text PDF

Strong coupling between single qubits is crucial for quantum information science and quantum computation. However, it is still challenged, especially for single solid-state qubit. Here, we propose a hybrid quantum system, consisting of a coplanar waveguide (CPW) resonator weakly coupled to a single nitrogen-vacancy (NV) spin in diamond and an yttrium-iron-garnet (YIG) nanosphere holding Kerr magnons, to realize strong long-distance spin-spin coupling.

View Article and Find Full Text PDF

Synthesis and Stabilization of a Benzene Dianion with a Triplet Ground State and Baird Aromaticity.

J Am Chem Soc

March 2025

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

The triplet benzene dianion is predicted to be aromatic based on Baird's rule. However, it has remained elusive due to the Jahn-Teller distortion. Herein, we report isolation of a benzene dianion with a triplet ground state in an inverse-sandwich europium benzene complex.

View Article and Find Full Text PDF

Implementing Arbitrary Ising Models with a Trapped-Ion Quantum Processor.

Phys Rev Lett

February 2025

Tsinghua University, State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Beijing 100084, China.

A promising paradigm of quantum computing for achieving practical quantum advantages is quantum annealing or quantum approximate optimization algorithm, where the classical problems are encoded in Ising interactions. However, it is challenging to build a quantum system that can efficiently map any structured problems. Here, we present a trapped-ion quantum processor that can efficient encode arbitrary Ising models with all-to-all connectivity for up to four spins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!