Serotonin (5-hydroxytryptamine, 5-HT) at low plasma concentrations reduces blood pressure and dilates some skeletal muscle arterioles in the rat. We hypothesized that the 5-HT7 receptor is essential for both 5-HT-induced changes in blood pressure and skeletal muscle arteriolar function. Male 5-HT7 receptor knock out (KO) rats under isoflurane anesthesia had a higher resting hindquarter vascular resistance [HQVR; mm Hg/ml/min; KO (16.0+2.0) vs WT (10.8+0.6.0), p = 0.04]; this was not observed in females. The reduction in blood pressure and HQVR caused by intravenous infusion of 5-HT (25 μg/kg/min) was attenuated (∼56%) in male and female KO rats vs WT. Left anterior descending (LAD) coronary arterial ligation was used to create a model of impaired hindquarter perfusion and exercise intolerance. The goal was to determine whether heart failure associated skeletal muscle blood flow abnormalities were affected by loss of a functioning 5-HT7 receptor in skeletal muscle vasculature. Transdermal neuromuscular electrical stimulation (NMES) was used to mimic exercise induced contraction of skeletal muscle and increase blood flow in the hindquarters (HQ). Male (M) and female (F) 5-HT7 receptor KO rats had a profoundly reduced ability to increase HQ flow during NMES vs WT (% increase from basal; M WT = 118.0+18.0 vs KO=14.6+7.1%; F WT= 101.0+12.0 vs KO = 7.6+6.0%), observed in sham and LAD rats. In a naive cohort of 5-HT7 WT and KO rats, NMES-induced increases in HQ flow did not occur in 5-HT7 receptor KO rats. The NMES-induced increase in HQ flow was also abolished in the presence of the 5-HT7 receptor antagonist SB269970 in normal Sprague-Dawley rats. Lectin visualization of gastrocnemius muscle microvasculature indicateded that the elevated HQVR at rest in male 5-HT7 receptor KO rats was not due to a reduced microvascular density vs the WT. We conclude that 5-HT acting at least in part via the 5-HT7 receptor may have a larger role in (patho)physiological regulation of the circulation than has been heretofore appreciated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0000000000001688 | DOI Listing |
J Cardiovasc Pharmacol
February 2025
Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317 USA.
Serotonin (5-hydroxytryptamine, 5-HT) at low plasma concentrations reduces blood pressure and dilates some skeletal muscle arterioles in the rat. We hypothesized that the 5-HT7 receptor is essential for both 5-HT-induced changes in blood pressure and skeletal muscle arteriolar function. Male 5-HT7 receptor knock out (KO) rats under isoflurane anesthesia had a higher resting hindquarter vascular resistance [HQVR; mm Hg/ml/min; KO (16.
View Article and Find Full Text PDFJ Neurosci
February 2025
Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
The prefrontal cortex (PFC) plays a key role in high-level cognitive functions and emotional behaviors, and PFC alterations correlate with different brain disorders including major depression and anxiety. In mice, the first two postnatal weeks represent a critical period of high sensitivity to environmental changes. In this temporal window, serotonin (5-HT) levels regulate the wiring of PFC cortical neurons.
View Article and Find Full Text PDFACS Chem Neurosci
February 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.
The serotonin 7 receptor (5-HTR) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gα protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
The hormone and neurotransmitter serotonin regulates numerous physiological functions within the central nervous system and in the periphery upon binding to specific receptors. In the periphery, the serotonin receptor 7 (5-HT7R) is expressed on different immune cells including monocytes and macrophages. To investigate the impact of 5-HT7R-mediated signaling on macrophage properties, we used human THP-1 cells and differentiated them into pro-inflammatory M1- and anti-inflammatory M2-like macrophages.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
February 2025
Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
Serotonin (5-HT) is a neurotransmitter found throughout the human body that regulates many physiological events arising from the brain and central nervous system (CNS), such as sleep and appetite. However, it has many other functions in systems outside. In addition to the routine expression of 5-HT7 receptors in CNS regions, such as the pituitary gland, spinal cord, and hippocampus, many studies have reported the expression of these receptors in pathological conditions outside.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!