Chronic obstructive pulmonary disease (COPD) is a global health burden, with Moraxella catarrhalis significantly contributing to acute exacerbations and increased healthcare challenges. This study aimed to identify potential drug candidates in Swertia chirayita, a traditional Himalayan medicinal plant, demonstrating efficacy against the ubiquitous surface protein A1 (UspA1) of M. catarrhalis through an in-silico computational approach. The three-dimensional structures of 46 phytocompounds of S. chirayita were retrieved from the IMPPAT 2.0 database. The structures underwent thorough analysis and screening, emphasizing key factors such as binding energy, molecular docking performance, drug-likeness, and toxicity prediction to assess their therapeutic potential. Considering the spectrometry, pharmacokinetic properties, docking results, drug likeliness, and toxicological effects, five phytocompounds such as beta-amyrin, calendol, episwertenol, kairatenol and swertanone were identified as the inhibitors of the UspA1 in M. catarrhalis. UspA1 demonstrated binding affinities of -9.1 kcal/mol for beta-amyrin, -8.9 kcal/mol for calendol, -9.4 kcal/mol for episwertenol, -9.6 kcal/mol for kairatenol, and -9.0 kcal/mol for swertanone. All of these affinities were stronger than that of the control drug ceftobiprole, which had a binding score of -6.6 kcal/mol. The toxicity analysis confirmed that all five compounds are safe potential therapeutic options, showing no toxicity or carcinogenicity. We also performed a 100 ns molecular dynamics simulation of the phytocompounds to analyze their stability and interactions as protein-ligand complexes. Among the five screened phytocompounds, beta-amyrin and episwertenol exhibited favorable characteristics, including stable root mean square deviation values, minimal root mean square fluctuations, and consistent radius of gyration values. Throughout the simulations, intermolecular interactions such as hydrogen bonds and hydrophobic contacts were maintained. Additionally, the compounds demonstrated strong affinity, as indicated by negative binding free energy values. Taken together, findings of this study strongly suggest that beta-amyrin and episwertenol have the potential to act as inhibitors against the UspA1 protein of M. catarrhalis, offering promising prospects for the treatment and management of COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870343 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316275 | PLOS |
Science
March 2025
D-Wave Quantum Inc., Burnaby, British Columbia, Canada.
Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. Here we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schrödinger equation.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
The nucleation and growth of surface islands in the pre-coalescence stage has previously been studied by different methods, including the rate equation approach and kinetic Monte Carlo simulations. However, full understanding of island growth kinetics and the scaling properties of their size distributions is still lacking. Here, we investigate rate equations for the irreversible homogeneous growth of islands in the continuum limit, and derive a general island-size distribution whose shape is fully determined by the dynamics of the monomer concentration at a given size dependence of the capture coefficients.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Deparment of Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
Hydrated anatase (101) titanium dioxide surfaces with oxygen vacancies have been studied using a combination of classical and ab initio molecular dynamics simulations. The reactivity of surface oxygen vacancies was investigated using ab initio calculations, showing that water molecules quickly adsorb to oxygen vacancy sites upon hydration. The oxygen vacancy then quickly reacts with the adsorbed water, forming a protonated bridging oxygen atom at the vacancy site and at a neighboring oxygen bridge.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
This study employs molecular dynamics simulations to unravel the interplay between twin spacing, temperature, and mechanical response in nanotwinned AgPd alloys. For fine-grained systems, a dual strengthening-softening transition emerges as twin spacing decreases, driven by a shift in dislocation behavior from inclined-to-twin-boundary slip to parallel-to-twin-boundary glide. In contrast, coarse-grained configurations exhibit monotonic strengthening with reduced twin spacing, governed by strain localization at grain boundaries and suppressed dislocation activity.
View Article and Find Full Text PDFTerahertz (THz) waves, a novel type of radiation with quantum and electronic properties, have attracted increasing attention for their effects on the nervous system. Spatial working memory, a critical component of higher cognitive function, is coordinated by brain regions such as the infralimbic cortex (IL) region of the medial prefrontal cortex and the ventral cornu ammonis 1 (vCA1) of hippocampus. However, the regulatory effects of THz waves on spatial working memory and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!