Diabetic peripheral neuropathy (DPN) is a common diabetic complication with no currently available curative treatments. Here, we demonstrated that the protein level of G-protein-coupled receptor 40 (GPR40) is significantly repressed in the sciatic nerves (SN) of DPN patients, as well as in the peripheral nerves, including dorsal root ganglia (DRG) and SN, of streptozotocin (STZ)-induced type 1 diabetic mice and BKS Cg-m+/+Lepr db/J (db/db) type 2 diabetic mice. We identified that amlodipine besylate (AB), a first-line clinical antihypertensive drug, as a GPR40 agonist capable of alleviating DPN-like pathologies in mice. These pathologies include neurological damage, destruction of myelin sheath structures, vascular injury, loss of intraepidermal nerve fibers, and impaired neurite outgrowth in DRG neurons. To elucidate the underlying mechanisms, we generated the DPN mice with GPR40-specific knockdown in SN and DRG tissues using adeno associated virus 8-GPR40-RNAi. Mechanistically, AB attenuated inflammatory responses via the GPR40/β-arrestin2/NLRP3 pathway and ameliorated mitochondrial dysfunction through the GPR40/LKB1/AMPK/SIRT1/PGC-1α pathway in DPN mice, which were all further validated in primary human Schwann cells. Additionally, AB suppressed the crosstalk between Schwann cells and endothelial cells /DRG neurons in DPN mice. Collectively, our findings highlight the potential of AB for the treatment of DPN.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db24-0403DOI Listing

Publication Analysis

Top Keywords

dpn mice
12
antihypertensive drug
8
amlodipine besylate
8
diabetic peripheral
8
peripheral neuropathy
8
type diabetic
8
diabetic mice
8
schwann cells
8
dpn
6
mice
6

Similar Publications

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Half of DPN patients experience sensory deficits including loss of sensation and pain. Loss of sensation increases the risk of unnoticed foot injuries which combined with poor circulation and healing lead to amputation.

View Article and Find Full Text PDF

Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism.

Ultrasonics

February 2025

Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.

Diabetic peripheral neuropathy (DPN), as one of the most prevalent complications of diabetes, leads to significant pain and financial burden to patients. Currently, there was no effective treatment for DPN since the glucose control was just a prevention and the drug therapy only relieved the DPN pain. As a non-invasive physical therapy, low-intensity pulsed ultrasound (LIPUS) is utilized in the musculoskeletal and nerve injuries therapy.

View Article and Find Full Text PDF

Antihypertensive drug amlodipine besylate shows potential in alleviating diabetic peripheral neuropathy.

Diabetes

February 2025

Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Diabetic peripheral neuropathy (DPN) is a common diabetic complication with no currently available curative treatments. Here, we demonstrated that the protein level of G-protein-coupled receptor 40 (GPR40) is significantly repressed in the sciatic nerves (SN) of DPN patients, as well as in the peripheral nerves, including dorsal root ganglia (DRG) and SN, of streptozotocin (STZ)-induced type 1 diabetic mice and BKS Cg-m+/+Lepr db/J (db/db) type 2 diabetic mice. We identified that amlodipine besylate (AB), a first-line clinical antihypertensive drug, as a GPR40 agonist capable of alleviating DPN-like pathologies in mice.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a prevalent complication affecting over half of individuals with diabetes. This study investigates the role of mesencephalic Astrocyte-derived neurotrophic factor (MANF) in DPN progression and its potential as a therapeutic target. Using a streptozotocin (STZ)-induced diabetic mouse model, we analyzed MANF expression in the dorsal root ganglia (DRG) and sciatic nerve and assessed the effects of recombinant human MANF (rhMANF) administration on DPN symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!