Congenital bone anomalies are occasionally located adjacent to deep lipomas. These bone dysplasias may take the form of localized overgrowth or osseous malformation. Two patients with iliac anomalies and spinal dysraphism and one with a hypertrophied rib and vertebra associated with lipomas are described. As both the lipomas and osseous anomalies tend to lie in the same sensory nerve distribution, there may be a common embryonic neural dysfunction affecting formation and subsequent growth of these structures.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00355349DOI Listing

Publication Analysis

Top Keywords

congenital bone
8
bone anomalies
8
associated lipomas
8
anomalies
4
anomalies associated
4
lipomas
4
lipomas congenital
4
anomalies occasionally
4
occasionally located
4
located adjacent
4

Similar Publications

 Instrumentation of C2 vertebra is considered the most difficult for young neurosurgeons and trainees due to its complex anatomical structures, variety of surgical approaches and techniques, and proximity to important neurovascular structures. Key points from a surgical perspective for midline posterior approach is described in the era of neuroradiological advancements.  Computed tomography angiographies (CTAs) of a total of 92 patients were evaluated with special attention to the key findings for insertion of screws for craniovertebral junction (CVJ) fixations.

View Article and Find Full Text PDF

Klippel-Feil syndrome (KFS) is a rare congenital disorder characterized by the fusion of cervical vertebrae, with a clinical presentation that can vary widely due to genetic and phenotypic diversity. While KFS can occur as an isolated anomaly, it is often associated with other congenital conditions, such as Sprengel deformity, which may present with or without an omovertebral bone, complicating diagnosis and management. This particular case also involves diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin lymphoma.

View Article and Find Full Text PDF

Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications.

J Mater Chem B

January 2025

State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.

View Article and Find Full Text PDF

Tooth autotransplantation is widely used to replace congenitally missing teeth or teeth with irreversible damage. This case report presents a personalized ultrasonic osteotome that enables precise preparation, minimizes bone trauma, enhances the initial stability of the transplanted tooth, and contributes to a favorable prognosis. The procedure is as follows: a 25-year-old female patient presented with a porcelain-fused-to-metal crown on Tooth #19, which had detached due to severe decay, rendering the tooth unsalvageable.

View Article and Find Full Text PDF

Introduction: Reconstructing large bone defects for lower limb salvage in the pediatric population remains challenging due to complex oncological or septic issues, limited surgical options, and lengthy procedures prone to complications. The vascularized double-barreled fibula free flap is pivotal for reconstructing large bones. In this article, we report our experience with this technique in the surgical management of pediatric tibial bone defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!