Abdominal aortic aneurysm (AAA) is a high-risk inflammatory disorder. SENP3, a SUMO2/3-specific protease, is closely involved in the development of cancer. In this study, the aim is to explore the role of SENP3 in macrophages in AAA. It is found that the protein expression of SENP3 is significantly upregulated in both human and murine AAA specimens. SENP3 expression is negatively regulated by the E3 ubiquitin ligase STUB1/CHIP. Furthermore, myeloid-specific SENP3 knockout inhibited AAA formation in both AngII- and CaCl-induced mouse models. SENP3 deficiency repressed AAA lesion macrophage infiltration and inflammatory response. Mechanistic studies identified Cystathionine Gamma-Lyase (CTH), a critical enzyme involved in hydrogen sulfide production, as a target protein of SENP3 that mediated the exacerbating effects of SENP3 on ferroptosis and inflammatory programs in macrophages. SUMO-3 modification at Lysine 361 promoted CTH protein stability, whereas de-SUMOylation by SENP3 facilitated its proteasome-dependent degradation. Most importantly, it is found that CTH inhibitor counteracted the protective effect of SENP3 deficiency on AAA. Additionally, supplementation with ATB346, a novel HS-donating naproxen derivative, prevented AAA development in mice. These studies suggest that SENP3-mediated CTH deSUMOylation regulates macrophage ferroptosis and AAA development. The SENP3/CTH axis is therefore an important therapeutic target for aortic aneurysmal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202414500DOI Listing

Publication Analysis

Top Keywords

senp3
11
abdominal aortic
8
aortic aneurysm
8
aaa
8
senp3 deficiency
8
aaa development
8
cth
5
senp3 drives
4
drives abdominal
4
development
4

Similar Publications

Background: Ribosome biogenesis (RiboSis) is a complex process for generating ribosomes, the cellular machinery responsible for protein synthesis. Dysfunctional RiboSis can disrupt cardiac structure and function, contributing to cardiovascular diseases. This study employed a Mendelian randomization (MR) approach, integrating multi-omics data, to investigate the relationship between RiboSis-related genes and standard cardiac structure and function.

View Article and Find Full Text PDF

Selenium nanoparticles (SeNPs) have attracted considerable attention in the field of cancer therapy due to their remarkable biological activities and advantageous nanoscale properties. However, their inherent instability presents a considerable challenge for broader applications. To address this issue, the heteropolysaccharide extracted from golden berries (the fruits of Physalis peruviana), designated as DLG, was utilized to synthesize heteropolysaccharide-conjugated selenium nanoparticles, named DLG-SeNP3.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a high-risk inflammatory disorder. SENP3, a SUMO2/3-specific protease, is closely involved in the development of cancer. In this study, the aim is to explore the role of SENP3 in macrophages in AAA.

View Article and Find Full Text PDF

SERPINH1 secretion by cancer-associated fibroblasts promotes hepatocellular carcinoma malignancy through SENP3-mediated SP1/SQLE pathway.

Int Immunopharmacol

March 2025

General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China. Electronic address:

Cancer-associated fibroblasts (CAFs) have garnered significant attention due to their ability to shape the tumor microenvironment, thereby facilitating tumor progression and metastasis. Serpin peptidase inhibitor clade H member 1 (SERPINH1) is known for its role in the proper folding and secretion of collagen. However, its biological significance in hepatocellular carcinoma (HCC) remains unclear.

View Article and Find Full Text PDF

SUMOylation regulates GSDMD stability and pyroptosis.

Int Immunopharmacol

March 2025

MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Shaoxing 312500, Zhejiang, China. Electronic address:

Various post-translational modifications (PTMs), such as palmitoylation, acetylation, and ubiquitination, have been shown to regulate pyroptosis. However, the role of small ubiquitin-like modifier (SUMO) modification, known as SUMOylation, in regulating GSDMD activity and pyroptosis remains unclear. Here, we demonstrate that inhibition of SUMOylation reduces inflammatory pyroptosis by downregulating GSDMD expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!