Metal-organic frameworks (MOFs) and their derivatives have recently attracted significant interest as promising candidates in water splitting due to their well-defined structural and electronic features, three-dimensional architecture, high surface area, abundance of active sites, remarkable stability, and improved capabilities for mass transport and diffusion. Mn-based MOFs and their derivatives have been extensively studied and demonstrated significant potential in water splitting, inspired largely by the natural photosystem-II. Despite the development of numerous Mn-based electrocatalysts, Mn-MOFs stand out due to their strong synergistic interactions, tunable electronic properties, efficient charge and mass transfer, and straightforward synthesis. However, recent reviews on MOFs have largely overlooked the specific advancements in Mn-MOFs and their derivatives for water-splitting applications. By providing an overview of the uses of Mn-MOFs and their materials, this article seeks to close that gap. It looks at their stability, porosity, and structure as well as how they are used in water splitting. This study offers a deeper knowledge of the properties and uses of Mn-MOFs and their related materials by drawing on groundbreaking research. The link between structure, property, and performance is examined, current advancements in the subject are discussed, difficulties faced are addressed, and potential future developments are taken into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202401522 | DOI Listing |
Small
March 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.
View Article and Find Full Text PDFChem Rev
March 2025
WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia.
Since photocatalytic and electrocatalytic technologies are crucial for tackling the energy and environmental challenges, significant efforts have been put into exploring advanced catalysts. Among them, perovskite type ABO oxides show great promising catalytic activities because of their flexible physical and chemical properties. In this review, the fundamentals and recent progress in the synthesis of perovskite type ABO oxides are considered.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.
Developing active, stable, and cost-effective acidic oxygen evolution reaction (OER) catalyst is a critical challenge in realizing large-scale hydrogen (H) production via electrochemical water splitting. Utilizing highly active and relatively inexpensive Ru is generally challenged by its long-term durability issue. Here, we explore the potential of stabilizing active Ru sites in Ru(Ir,Fe,Co,Ni) multicomponent alloy by investigating its phase formation behavior, OER performance, and OER-induced surface reconstruction.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121 Zhejiang, PR China. Electronic address:
Alkaline water electrolysis is emerging as a promising technology for large-scale hydrogen production. However, NiFe layered double hydroxide (NiFe LDH), one of the leading-edge oxygen evolution reaction (OER) electrocatalysts in alkaline water electrolysis, still faces challenges in effectively modulating highly active species to enhance its advanced performance, which is crucial for promoting industrial development. Herein, we report a facile anion engineering strategy to construct a novel NiFe LDH as an efficient anode electrocatalyst.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Chinese Medicine, Shenyang Medical College, Shenyang 110034 Liaoning, China. Electronic address:
Electrocatalytic hydrogen evolution reaction (HER) via water splitting is a prospective technology for achieving the sustainable production of hydrogen. So, ruthenium-based electrocatalysts have been extensively studied. However, metallic ruthenium tends to agglomerate due to the high cohesive energy, resulting in decreased HER performance in practical usage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!