Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202412462 | DOI Listing |
Cancer Med
March 2025
Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.
Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.
Front Immunol
March 2025
Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis.
View Article and Find Full Text PDFFront Immunol
March 2025
Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark.
Front Pharmacol
February 2025
School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
Atherosclerosis (AS)-related cardiovascular disease and depression are often comorbid, with patients with cardiovascular disease facing an increased risk of depression, which worsens AS. Both diseases are characterized by oxidative stress and lipid metabolism disorders. Ferroptosis, a form of cell death characterized by iron overload and harmful lipid peroxide accumulation, is found in various diseases, including AS and depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!