Simultaneously mitigating both photovoltage and photocurrent losses is crucial for organic solar cells (OSCs) to approach the Shockley-Queisser limit of ideal efficiency. Incorporating a narrower bandgap nonfullerene acceptor (NFA) as a guest component into the host donor:NFA system broadens the absorption spectrum. However, this can also increase the nonradiative decay rate according to the energy-gap law. In this work, ternary OSCs are constructed by combining a narrow bandgap AQx-2F (as host NFA) with a lower bandgap eC9 (as guest NFA), significantly enhancing photocurrent generation without compromising photovoltage. The addition of eC9 acts as a crystallization inducer, extending the crystallization period and increasing the ordered packing distance. This leads to suppressed trap states, elevated dielectric constant, prolonged exciton lifetime, balanced hole/electron transport, and reduced recombination loss. Consequently, the optimized D18:AQx-2F:eC9 ternary OSCs achieve a champion power conversion efficiency (PCE) of 20.6% with a high open-circuit voltage of 0.937 V, a short-circuit current density of 27.2 mA cm and a fill factor of 80.8%, as validated by an independently certified PCE of 20.0%, establishing a new benchmark for bulk heterojunction OSCs. This work demonstrates an effective method to simultaneously mitigate photovoltage and photocurrent losses, paving the way for high-performance OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202500282 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Wushan Road 381, 510640, Guangzhou, CHINA.
Energy loss (Eloss) between optical energy gap (Eg) and open-circuit voltage (eVoc) sets efficiency upper limits for organic solar cells (OSCs). Nevertheless, further breaking the limit of Eloss in OSCs is challenging, especially via structurally simple materials in binary OSCs. Herein, a structurally simple non-halogenated polymer donor, namely PBDCT, is developed for realizing high-efficiency OSCs with record-breaking Eloss.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Developing vapor-solid reaction methods to prepare organic-inorganic hybrid perovskite thin films is highly compatible with processes in crystalline silicon solar cells and the thin-film photovoltaic industries, facilitating rapid industrialization. In the vapor-solid reaction, the crystallization quality of perovskite thin films is widely influenced by the crystallinity and microstructure of lead iodide (PbI) precursor films. During the thermal evaporation process of preparing the PbI precursor films, we observed that PbI tends to develop a disordered surface morphology and exhibits high crystallinity, which significantly hinders the uniform diffusion of the organic amine salt vapor during the subsequent vapor-solid reaction.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.
Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.
View Article and Find Full Text PDFSmall
March 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
Green-solvent-processed all-polymer solar cells (AP-SCs) are regarded as an excellent candidate for renewable energy due to their better stability and eco-friendly features. Two polymers, PYF-U and PYF-BO, have been designed by introducing a Y-series derivative with difluoro-substituted dicyanindenone units and a difluorobenzotriazole derivative as the first and second electron-deficient (A) units, respectively. The introduction of two additional F atoms on dicyanindenone units leads to a more coplanar backbone because of noncovalent interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!