Moisture-enabled electric generators (MEGs) are emerging as a transformative energy technology, capable of directly converting ambient moisture into electrical energy without producing pollutants or harmful emissions. However, the widespread application of MEGs is hindered by challenges such as intermittent output and low current densities, which limit power density and prevent large-scale integration. Here, a novel moisture cell based on Al ion-F coordination-specifically, a fluorinated graphdiyne (FGDY) Al-ion moisture cell (FGDY AlMC) is introduced. This new moisture cell achieves an exceptionally high mass-specific power density of 371.36 µW g¹, stable output (0.65 V for 15 h), and broad applicability across varying humid environments. Density functional theory (DFT) calculations reveal that the large-pore molecular structure of FGDY significantly reduces the diffusion barriers for Al ions compared to other 2D carbon materials. Furthermore, the F atoms as "hard base" on FGDY effectively coordinate with "hard acid" Al ions, enhancing ionic conductivity, accelerating ion migration, and promoting the generation of a higher number of mobile cations. These combined advantages lead to a marked improvement in the performance of the FGDY AlMC. These findings position Al ion coordinated FGDY as a highly promising candidate for the development of high-performance MEG active materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202419706 | DOI Listing |
Int J Pharm
March 2025
School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India. Electronic address:
In this study, quercetin-incorporated squalene nanostructured lipid carriers (QS-NLCs) were developed to mitigate the pathological conditions of dry eye disease (DED). The melt emulsification method was used to prepare QS-NLCs. The resulting NLCs have 93.
View Article and Find Full Text PDFAdv Mater
March 2025
Université de Bretagne Sud, IRDL UMR CNRS 6027, BIONICS group, Lorient, 56100, France.
Biological structures provide inspiration for developing advanced materials from sustainable resources, enabling passive structural morphing. Despite an increasing interest for parsimony-oriented innovation, sustainable shape-changing materials based on renewable resources remain underexplored. In this work, the architecture of a single plant fiber cell wall (S, for instance) is simplified to design novel concepts of 4D printed tubular moisture-driven structural actuators, using the hygromorphic properties of continuous flax fiber (cFF) reinforced materials.
View Article and Find Full Text PDFInt J Cosmet Sci
March 2025
KAO Germany GmbH, Darmstadt, Germany.
Objective: Preliminary investigations into the swelling of human hair upon absorbing moisture have been performed to better understand the roles of the various hair morphological subcompartments and their response to moisture.
Methods: The isotherms of moisture sorption exhibited by hair were recorded via Dynamic Vapour Sorption (DVS) for separated cuticle and for cortex. Atomic Force Microscopy (AFM) imaging and nanoindentation were used to follow the changes in measured distances on the same areas of cuticle layers and cortex cells from a single fibre cross section, and to evaluate the change in these distances with changes in relative humidity.
Background: Dendrocalamus latiflorus is widely distributed in southern China and has high ornamental and edible value. The growth dynamics and the associations between growth and the distribution of nutrients or chemical components across various parts and stages of shoot development remain inadequately understood. In this study, tender shoots of D.
View Article and Find Full Text PDFPlant Dis
March 2025
HNU, Longping Branch Changsha, Changsha, Hunan, China.
Peppers (Capsicum annuum L.) are among the most widely consumed vegetable globally and cultivated in large areas in China (Zhou and Zhou 2021). In December 2023, pepper pith necrosis was discovered in a field located in Haiwan Town, Haitang District, Sanya City, Hainan, China (109.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!