O3-type layered oxides are promising cathode materials for sodium-ion batteries due to their easy synthesis and high sodium content. However, complex phase transitions and poor air stability limit their practical applications. Introducing sodium deficiency suppresses reactions with air and improves phase stability, but often at the cost of significantly compromising the sodium storage capacity. Herein, we present a hierarchical composition regulation strategy to achieve radial concentration control of sodium in the O3-type layered oxides, constructing radially distributed sodium gradients. The gradient Na content structure not only can alleviate the volume changes caused by the O3-P3 phase transition, which minimizes the degradation of electrochemical performance during cycling, but also suppresses Na/H exchange. This ensures enhanced air stability, improved kinetic performance, and cycling stability. The modified cathode material exhibits a capacity retention rate of 93.37% after 400 cycles at 5 C. When exposed to 82% relative humidity, CO concentration of 3044 ppm for 10 h, it still maintains a specific capacity of 84.9 mA h g after 300 cycles at 1 C, with a capacity retention rate of 77.27%. This work provides a strategy for radial sodium concentration control, contributing to the development of high-performance and air-stable O3-type sodium-ion battery cathode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c16523DOI Listing

Publication Analysis

Top Keywords

cathode materials
12
air stability
12
sodium deficiency
8
o3-type layered
8
layered oxides
8
concentration control
8
performance cycling
8
capacity retention
8
retention rate
8
sodium
6

Similar Publications

The performance of the electrocatalytic CO reduction reaction (CORR) is highly dependent on the microenvironment around the cathode. Despite efforts to optimize the microenvironment by modifying nanostructured catalysts or microporous gas diffusion electrodes, their inherent disorder presents a significant challenge to understanding how interfacial structure arrangement within the electrode governs the microenvironment for CORR. This knowledge gap limits fundamental understanding of CORR while also hindering efforts to enhance CORR selectivity and activity.

View Article and Find Full Text PDF

Rechargeable magnesium batteries (RMBs) exhibit significant potential in large-scale energy storage due to their features of high volumetric capacity, resistance to dendrite formation, and abundant magnesium resources. However, the high polarity of divalent Mg2+ ions results in sluggish diffusion kinetics in conventional inorganic cathode materials, adversely affecting reversible capacity and rate performance. Organic materials such as pyrene-4,5,9,10-tetrone (PTO) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), achieve rapid and reversible intercalation of magnesium ions through carbonyl enolization, but these materials are challenged by high cost, complex preparation, and poor environmental friendliness.

View Article and Find Full Text PDF

Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices.

View Article and Find Full Text PDF

Soda saline-alkali soils pose significant challenges to agricultural productivity due to high pH and excessive sodium content. This study investigated the removal of excess salts in soda saline-alkali soil through electrochemical treatment (ECT). Traditional ECT often led to uneven soil pH distribution, with acidic conditions near the anode and alkaline conditions near the cathode, which limited its effectiveness for soil improvement.

View Article and Find Full Text PDF

A disposable, self-powered enzymatic biofuel cell (BFC) sensor integrated with a hollow microneedle array (HMNA) for glucose monitoring in interstitial fluid (ISF) is reported. The HMNA enables painless and minimally invasive ISF extraction. The BFC uses dehydrogenase (GDH) in conjunction with NAD, diaphorase (DI), and vitamin K (VK) serving as electron transfer mediators as the anode catalyst and Prussian blue (PB) as the electrochromic cathode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!