Background: In comparison with perfectly machined surface implants, surface topographic modifications like roughness accelerate the osteogenesis of dental pulpal stem cells (DPSC). This greatly enhances bone-implant contact and osteogenic potential of the stem cells. Hence, the aim of the current study was to evaluate and compare the differentiation and proliferation potential of stem cells obtained from dental pulp on sand-blasted and acid etched implant discs surfaces.

Materials And Methods: Stem cells from dental pulp were extracted from the premolar region of oral cavity. Titanium discs that measured one centimeter in diameter and three millimetres in thickness were used as investigation surfaces. Titanium surface disc were acid etched and sandblasted. Investigation had three group: acid etched (Group A), sandblasted (Group B), and standard control group, i.e., cells treated with osteogenic induction media only (Group C). In Group C, mesenchymal stem cells (MSCs) were treated with osteogenic induction medium without any titanium disc and these cells were used as standard controls. To identify which modified implant surface had greater potential for proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed using the explant culture. MTT assay assessed the viability of the cells as a function of its redox potential. This was followed by recognition of the stem cells for CD90, CD73, and CD 105 markers using flow cytometry with RUNX2 antibody on days 7 and 21 of incubation. The isolated cells were stained using 1% alizarin red stain to identify the number of stem cells per square centimeter area under the light microscope.

Results: The osteogenic differentiation of both the materials was compared with standard control (MSCs treated with osteogenic differentiation media only). The osteoblastic cells on the acid-etched and sand-blasted implant surface disc had an almost identical capacity for proliferation till the MTT assay but according to the results of the alizarin red staining there was a slightly higher proliferation potential on acid etched surfaces compared to the sand blasted surfaces. Therefore, acid etched surfaces showed higher potential of osteogenic differentiation of DPSCs compared with sand-blasted surfaces.

Conclusion: In comparison with perfectly machined surface implants, topographic surface modifications such as roughness can accelerate the osteogenesis of DPSC .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864341PMC
http://dx.doi.org/10.4103/jisp.jisp_307_23DOI Listing

Publication Analysis

Top Keywords

stem cells
32
acid etched
20
osteogenic differentiation
16
cells
13
dental pulp
12
treated osteogenic
12
mtt assay
12
stem
8
comparison perfectly
8
perfectly machined
8

Similar Publications

A reflection on Arnold Caplan, the father of MSC.

Best Pract Res Clin Haematol

December 2024

Departments of Pathology, Biomedical Engineering, and Macromolecular Science, Case Western Reserve University, USA. Electronic address:

Arnold Caplan was the father of MSC, mesenchymal stem cells. His pioneering efforts have led to significant advances in the utilization of mesenchymal stem cells for the treatment of a wide variety of clinical diseases. This reflection provides some insight into Arnold's commitment to education and research regarding mesenchymal stem cells.

View Article and Find Full Text PDF

Cytokine therapy of acute radiation syndrome.

Best Pract Res Clin Haematol

December 2024

Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, SW7 2AZ, UK.

Radiological accidents/incidents are common with nearly 400 reported since 1944 exposing about 3000 people to substantial doses of ionizing radiations with 127 deaths. Damage to hematopoietic stem and progenitor cells with resulting bone marrow failure is a common consequence of exposure to whole body acute high-dose and -dose-rate ionizing radiations and is termed hematopoietic-acute radiation syndrome, or H-ARS. Therapy of H-ARS includes transfusions, anti-bacterial and -viral drugs, molecularly-cloned hematopoietic growth factors and hematopoietic cell transplants.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSC) have been transplanted for therapeutic purposes with inconsistent results. MSC preparations are heterogeneous, and this person-to-person heterogeneity may account for the variable clinical outcomes. Additionally, the mechanisms of therapeutic action for MSC are unclear which confounds attempts to understand and identify factors that may account for variable clinical results.

View Article and Find Full Text PDF

CAR assembly line: Taking CAR T-cell manufacturing to the next level.

Best Pract Res Clin Haematol

December 2024

Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.

The widespread adoption of chimeric antigen receptor (CAR) T-cell therapy has been limited by complex, resource-intensive manufacturing processes. This review discusses the latest innovations aiming to improve and streamline CAR T-cell production across key steps like T-cell activation, genetic modification, expansion, and scaling. Promising techniques highlighted include generating CAR T cells from non-activated lymphocytes to retain a stem-like phenotype and function, non-viral gene transfer leveraging platforms like transposon and CRISPR, all-in-one fully automated bioreactors like the CliniMACS Prodigy and the Lonza Cocoon, rapid CAR T-cell manufacturing via abbreviating or eliminating ex vivo T-cell culture, implementing decentralized point-of-care automated manufacturing platforms, and optimizing centralized bioreactor infrastructure integrating end-to-end automation.

View Article and Find Full Text PDF

Innovative Construction and Application of Bile Duct Organoids: Unraveling the Complexity of Bile Duct Diseases and Potential Therapeutic Strategies.

Cancer Lett

March 2025

School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China. Electronic address:

The biliary system is crucial for liver function, regulating bile production, secretion, and transport. Dysfunctions within this system can lead to various diseases, such as cholangiopathies and biliary fibrosis, which may progress from benign to malignant states like cholangiocarcinoma. While liver organoid research is well-established and technologically advanced, bile duct organoids (BDOs) offer significant potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!