Collagenous matrices, used as cell culture substrata, can be prepared from different collagen types in a variety of forms using a range of polymerization procedures. Type I collagen has been most frequently used either as dried collagen films or hydrated collagen gels. Sheets of isolated bladder urothelium, when plated onto such matrices prepared from type I collagen by different polymerization methods (eg. air-drying; NaOH; NaCl; NH3; or NH3 followed by glutaraldehyde crosslinking) demonstrate the capability of urothelial cells to attach to a variety of differently prepared matrices irrespective of polymerization procedure. In contrast, both cell proliferation and maintenance of the urothelium are markedly influenced by the polymerized form of the collagen matrix. Comparative ultrastructural (scanning and transmission electron microscopy) analysis of these matrices demonstrates dissimilarities in their physical organization. The level of filamentous, fibrillar or fibrous reaggregation of solubilized collagen molecules varies in relation to the polymerization procedure used viz, a) air dried matrices form a dense meshwork of many forms of collagen fibrils and associated filaments with an irregular surface array of coarser collagen fibres; b) matrices prepared by NaOH, NaCl and NH3 polymerization present no major differences and form a felt of interlocking collagen fibres with discrete filamentous networks associated with these fibres; and c) matrices polymerized by NH3 and crosslinked with glutaraldehyde form a dense meshwork of filaments with a more occasional distribution of fibrils associated with filaments or dense "amorphous" aggregates. The level of supramolecular reassemblage of solubilized collagen may be, therefore, a significant factor in determining urothelial cell growth and differentiation on collagen matrices.
Download full-text PDF |
Source |
---|
Drug Deliv
December 2025
Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms.
View Article and Find Full Text PDFExp Ther Med
February 2025
Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
The present study aimed to investigate the role of a recombinant protein based on human collagen type I (RCPhC1) as a scaffold in maintaining the human tumor microenvironment within a patient-derived tumor xenograft (PDTX) model. RCPhC1, synthesized under animal component-free conditions, was explored for its potential to support the human-specific stroma associated with tumor growth. PDTX models were established using resected colorectal cancer liver metastasis specimens, and stromal cell populations from humans and mice were compared using three scaffolds: No scaffold (control), Matrigel and recombinant human collagen type I, across two passages.
View Article and Find Full Text PDFClin Case Rep
January 2025
Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama University Okayama Japan.
A 39-year-old woman presented a saucer-shaped mass in the left upper eyelid and underwent the extirpation at local anesthesia. Pathologically, collagen fibers, capillaries, small vessels, and CD34-positive spindle cells were dispersed among mature adipose tissues, indicative of spindle cell lipoma. Long-lasting cyst-like eyelid masses would be usually dermoid cysts, and spindle cell lipoma would be listed as a rare pathological diagnosis in differential diagnoses of cyst-like lesions in the upper and lower eyelid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!