Nanomechanical characterization of soft nanomaterial using atomic force microscopy.

Mater Today Bio

College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.

Published: April 2025

Atomic force microscopy (AFM) is a promising method for generating high-spatial-resolution images, providing insightful perspectives on the nanomechanical attributes of soft matter, including cells, bacteria, viruses, proteins, and nanoparticles. AFM is widely used in biological and pharmaceutical sciences because it can scrutinize mechanical properties under physiological conditions. We comprehensively reviewed experimental techniques and fundamental mathematical models to investigate the mechanical properties, including elastic moduli and binding forces, of soft materials. To determine these mechanical properties, two-dimensional arrays of force-distance () curves are obtained through AFM indentation experiments using the force volume technique. For elasticity determination, models are divided into approach curve-based models, represented by the Hertz model, and retract curve-based models, exemplified by the Johnson-Kendall-Roberts and Derjaguin-Müller-Toporov models. Especially, the Chen, Tu, and Cappella models, developed from the Hertz model, are used for thin samples on hard substrates. Additionally, the establishment of physical or chemical bonds during indentation experiments, observable in retract curves, is crucial for the adhesive properties of samples and binding affinity between antibodies (receptors) and antigens (ligands). Chemical force microscopy, single-molecule force spectroscopy, and single-cell force spectroscopy are primary AFM methods that provide a comprehensive view of such properties through retract curve analysis. Furthermore, this paper, structured into key thematic sections, also reviews the exemplary application of AFM across multiple scientific disciplines. Notably, cancer cells are softer than healthy cells, although more sophisticated investigations are required for prognostic applications. AFM also investigates how bacteria adapt to antibiotics, addressing antimicrobial resistance, and reveals that stiffer virus capsids indicate reduced infectivity, aiding in the development of new strategies to combat viral infections. Moreover, AFM paves the way for innovative therapeutic approaches in designing effective drug delivery systems by providing insights into the physical properties of soft nanoparticles and the binding affinity of target moieties. Our review provides researchers with representative studies applying AFM to a wide range of cross-disciplinary research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867545PMC
http://dx.doi.org/10.1016/j.mtbio.2025.101506DOI Listing

Publication Analysis

Top Keywords

force microscopy
12
mechanical properties
12
atomic force
8
afm
8
indentation experiments
8
curve-based models
8
hertz model
8
binding affinity
8
force spectroscopy
8
force
6

Similar Publications

Single-Bacterium Diagnosis via Terahertz Near-Field Dielectric Nanoimaging.

ACS Appl Mater Interfaces

March 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

Single-bacterium diagnostic methods with unprecedented precision and rapid turnaround times are promising tools for facilitating the transition from empirical treatment to personalized anti-infection treatment. Terahertz (THz) radiation, a cutting-edge technology for identifying pathogens, enables the label-free and non-destructive detection of intermolecular vibrational modes and bacterial dielectric properties. However, this individual dielectric property-based detection and the mismatched spatial resolution are limited for the single-bacterium identification of various species of pathogens.

View Article and Find Full Text PDF

Quad-Nanopore Array Enables High-Resolution Identification of Four Single-Stranded DNA Homopolymers.

ACS Nano

March 2025

State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China.

The solid-state nanopore technique holds the potential to develop mechanically stable and miniaturized DNA sequencing devices. However, the limited temporal resolution due to the high electric field inside the nanopore and the lack of an effective speed control strategy have hindered the realization of sequencing. Here, we reported a quad-array (four nanopores milled with ∼30 nm interpore spacing as a detection unit) that induced a redistribution of the electric field inside and outside the nanopore array and offered high-resolution discrimination of four ssDNA homopolymer types.

View Article and Find Full Text PDF

Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).

Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.

View Article and Find Full Text PDF

Research on Wet Etching Techniques for GaInAs/AlInAs/InP Superlattices in Quantum Cascade Laser Fabrication.

Nanomaterials (Basel)

March 2025

Department of Optical Engineering, School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China.

Wet etching is the mainstream fabrication method for single-bar quantum cascade lasers (QCLs). Different etching solutions result in varying etching effects on III-V semiconductor materials. In this study, an efficient and nearly ideal etching solution ratio was proposed for simultaneously etching both InP and GaInAs/AlInAs, and the surface chemical reactions induced by each component of the etching solution during the process were investigated.

View Article and Find Full Text PDF

Temperature-Dependent Morphology Modulation of MoO from 1D Nanoribbons to 2D Nanoflakes for Enhanced Two-Dimensional Electrode Applications.

Nanomaterials (Basel)

March 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.

The morphology modulation of target crystals is important for understanding their growth mechanisms and potential applications. Herein, we report a convenient method for modulating the morphology of MoO by controlling different growth temperatures. With an increase in growth temperature, the morphology of MoO changes from a nanoribbon to a nanoflake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!