The incidence of gastric cancer remains high and poses a serious threat to human health. Recent comprehensive investigations into amino acid metabolism and immune system components within the tumor microenvironment have elucidated the functional interactions between tumor cells, immune cells, and amino acid metabolism. This study reviews the characteristics of amino acid metabolism in gastric cancer, with a particular focus on the metabolism of methionine, cysteine, glutamic acid, serine, taurine, and other amino acids. It discusses the relationship between these metabolic processes, tumor development, and the body's anti-tumor immunity, and analyzes the importance of targeting amino acid metabolism in gastric cancer for chemotherapy and immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864927PMC
http://dx.doi.org/10.3389/fimmu.2025.1508730DOI Listing

Publication Analysis

Top Keywords

amino acid
20
acid metabolism
20
gastric cancer
16
targeting amino
8
anti-tumor immunity
8
metabolism gastric
8
acid
6
metabolism
6
amino
5
metabolism inhibit
4

Similar Publications

Allergenicity Reduction of Shrimp () via Fucoidan-Mediated Covalent Modification: Insights from Epitope Modifying Effect.

J Agric Food Chem

March 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Covalent modification is an effective strategy for reducing allergenicity to individual allergens, but there are few studies on this strategy modifying specific amino acids within epitopes under the influence of food matrix. This study used fucoidan to covalently modify shrimp () and combined mass spectrometry and bioinformatics techniques to explore epitope modification. The results showed that lower concentrations (<2.

View Article and Find Full Text PDF

Precise motif and cross-presentation of coronavirus peptides by feline MHC class I: implications for the mild infection of SARS-CoV-2.

J Immunol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

As one of the earliest identified susceptible animals for the SARS-CoV-2, cats are also the vulnerable hosts for feline coronaviruses, ie feline enteric coronavirus (FECV). Here, to understand the cross-presentation of coronavirus-derived peptides by cat major histocompatibility complex molecule feline leucocyte antigen (FLA) class I, unpredictable natural peptide motifs presented by FLA-K*00701 and FLA-E*00301 were identified through peptide elution and further confirmed by the structural determination of the 2 FLA class I molecules. Based on these precise motifs of FLA class I peptides, the atlas of cross-presenting peptides from different coronaviruses in cats were sketched with 3 hotspots in C-terminal half of ORF1ab protein.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is a highly metastatic malignancy. More than 80% of patients with PC present with advanced-stage disease, preventing potentially curative surgery. The neuropeptide Y (NPY) system, best known for its role in controlling energy homeostasis, has also been shown to promote tumorigenesis in a range of cancer types, but its role in PC has yet to be explored.

View Article and Find Full Text PDF

DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.

View Article and Find Full Text PDF

We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!