Background: In cancer metastasis, tumor cells condition distant tissues to create a supportive environment, or metastatic niche, by driving the activation of cancer-associated fibroblasts (CAFs). These CAFs remodel the extracellular matrix, creating a microenvironment that supports tumor growth and compromises immune cell function, enabling cancer cells to evade immune detection. Consequently, targeting the activation of CAFs has been proposed as a therapeutic strategy to hinder metastatic spread. Our objective was to develop the first phenotypic screening assay capable of assessing this activation process.
Methods: Human primary lung fibroblasts were co-cultured with highly invasive breast cancer cells (MDA-MB-231) to identify changes in the expression of selected genes using RT-qPCR. An In-Cell ELISA (ICE)-based assay using human lung fibroblasts, MDA-MB-231 cells and human monocytes (THP-1 cells) was developed to measure the activation of CAFs. Another ELISA assay was used to measure released osteopontin.
Results: When lung fibroblast were co-cultured with MDA-MB-231 cells, among the 10 selected genes, the genes for osteopontin (SPP1), insulin like growth factor 1 (IGF1), periostin (POSTN) and α-smooth muscle actin (α-SMA, ACTA2) elicited the greatest fold change (55-, 37-, 8- and 5-fold respectively). Since osteopontin, IGF-1 and periostin are secreted proteins and α-SMA is an intracellular cytoskeleton protein, α-SMA was chosen to be the readout biomarker for the ICE assay. When fibroblasts were co-cultured with MDA-MB-231 cells and monocytes in the 96 well ICE assay, α-SMA expression was increased 2.3-fold yielding a robust Z' of 0.56. A secondary, low throughput assay was developed by measuring the release of osteopontin which showed a 6-fold increase when fibroblasts were co-cultured with MDA-MB-231 cells and monocytes.
Discussion: This phenotypic assay is the first to measure the activation of CAFs in a 96-well format, making it suitable for medium-to high-throughput screening of potential therapeutic compounds. By focusing on observable cellular phenotypic changes rather than targeting specific molecular pathways, this assay allows for a broader and unbiased identification of compounds capable of modulating CAF activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865240 | PMC |
http://dx.doi.org/10.3389/fphar.2025.1526495 | DOI Listing |
Bioorg Chem
March 2025
Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Triple negative form of breast cancer (abbreviated as TNBC) is considered as the most aggressive form causing high mortality worldwide. Different treatment modalities such as chemotherapy, surgery, hormonal therapy and radiation therapy are employed for eliminating breast cancer, which are associated with many limitations. Therefore, considering the significance of metal nanoparticles in the biomedical sector, especially gold nanoparticles, in the current manuscript, we have designed and developed a combinatorial approach for synthesizing two types of gold (Au) nanoformulations (Au-Dex-MUA-Rapa, Au-Dex-MUA-Ola) using 11-mercaptoundecanoic acid (MUA), dexamethasone (Dex) (glucocorticoid receptor targeted molecule) along with rapamycin (Rapa: inhibitor of mTOR) or olaparib (Ola: inhibitor of PARP) against TNBC.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
March 2025
Department of PG Studies and Research in Physics Albert Einstein Block UCS Tumkur University, Tumkur Karnataka-572103 India.
The title compound, CHNO, was synthesized by S2 reaction of bromo-methyl coumarin with 4,4-di-methyl-piperidine-2,6-dione. The mol-ecule crystalizes in the monoclinic system with space group 2/. The coumarin unit is almost planar with a dihedral angle between the aromatic rings of 0.
View Article and Find Full Text PDFEXCLI J
February 2025
Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
A significant obstacle in translating innovative breast cancer treatments from bench to bed side is demonstrating efficacy in preclinical settings prior to clinical trials, as the heterogeneity of breast cancer can be challenging to replicate in the laboratory. A significant number of potential medicines have not progressed to clinical trials because preclinical models inadequately replicate the complexities of the varied tumor microenvironment. Consequently, the variety of breast cancer models is extensive, and the selection of a model frequently depends on the specific inquiry presented.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
Premenopausal women, often iron-deficient, face a heightened risk of breast cancer. Magnetic nanoparticles (MNPs) show promise for cancer therapy but are limited by challenges in pharmacokinetics, biocompatibility, and magnetic property stability, leading to reduced efficacy and resistance. To overcome these hurdles, a double-shelled magnetic nanoparticle (DOX RA MNP) system was developed for pH-sensitive delivery of Retinoic acid and Doxorubicin using an immunomodulatory polymeric approach.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2025
Prince Fahad bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia.
Prefoldin1 (PFDN1), a molecular chaperone, is essential for stabilizing cytoskeletal proteins like actin and tubulin, supporting cellular processes such as survival, migration, and cell cycling. Recent evidence suggests that PFDN1 also influences key cancer-related signaling pathways. However, the complete mechanisms involved and the downstream genes implicated in such action remain relatively undiscovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!