A novel strategy to promote elimination of CVOCs at low temperature, specifically involving hydrodechlorination under O, was proposed. Turnover frequency and HCl yield in oxidation of vinyl chloride increased, respectively, by over 22 and 43 times (225 °C) with the assistance of 1000 ppm H. A new chemical equation (CHCHCl + H + O → CO + HCl + HO) was used to describe the reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc06366j | DOI Listing |
J Chem Theory Comput
March 2025
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
Protein evolution has shaped enzymes that maintain stability and function across diverse thermal environments. While sequence variation, thermal stability and conformational dynamics are known to influence an enzyme's thermal adaptation, how these factors collectively govern stability and function across diverse temperatures remains unresolved. Cytosolic malate dehydrogenase (cMDH), a citric acid cycle enzyme, is an ideal model for studying these mechanisms due to its temperature-sensitive flexibility and broad presence in species from diverse thermal environments.
View Article and Find Full Text PDFSmall
March 2025
Department of Materials Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) due to their tunable bandgaps, which allow the active layers to be optimized for artificial light sources. However, significant non-radiative carrier recombination under low-light conditions has limited the full potential of perovskite-based IPVs. To address this challenge, an integration of perylene diimide (PDI)-based sulfobetaines as cathode interlayers (CILs) is proposed and the impact of varying alkyl chain length (from 1,2-ethylene to 1,5-pentylene) between the cationic and the anionic moieties is examined.
View Article and Find Full Text PDFSmall Methods
March 2025
School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China.
Solid polymer electrolytes (SPEs) have garnered significant attention from both academic and industrial communities due to their high safety feature and high energy density in combination with lithium(Li) metal anode. Nevertheless, their practical applications remain constrained by the relatively low room-temperature ionic conductivity and interface issues. Anion-derived cation-anion aggregates (AGGs), derived from high-concentration liquid electrolytes, promote a stable solid-electrolyte interphase layer, which have gradually propelled their application in SPEs.
View Article and Find Full Text PDFSmall Methods
March 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
Metal carbides are considered attractive lithium-ion battery (LIB) anode materials. Their potential practical application, however, still needs nanostructure optimization to further enhance the Li-storage capacity, especially under large current densities. Herein, a nanoporous structured multi-metal carbide is designed, which is encapsulated in a 3D free-standing nanotubular graphene film (MnNiCoFe-MoC@NG).
View Article and Find Full Text PDFGlob Health Action
December 2025
Department of Epidemiology and Global Health, Medical Faculty, Umeå University, Umeå, Sweden.
The balls are rolling for climate change, with increasing vulnerability to women and children related to climate extreme events. Recent evidence has shown that acute exposure to heat wave during pregnancy can be associated with adverse health outcomes in childhood, with the risk being significantly higher among socially disadvantaged population, despite their lack of contribution to global carbon dioxide emissions and the rising global ambient temperature. This unequal impact requires utmost attention to develop tools, establish interdisciplinary teams, and to implement evidence-based interventions for the betterment of women and children in climate-vulnerable populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!