An efficient CsCO-promoted and copper(I)-catalyzed double cyclization of -nitrochalcones with vinyl malononitriles for the access to a variety of tri- and tetra-substituted acridones and their fused derivatives with a value-added CN group has been developed for the first time. This one-pot operation proceeds through a Michael-cyclization-aromatization, followed by regioselective -amination via nucleophilic aromatic substitution (SAr) reaction, resulting in two C═C bonds and a C-N bond for acridone ring synthesis. This economic strategy based on 100% carbon atoms ensures the successive formation of two rings in a one-pot operation, good to high yields, a wide range of substrates, and good tolerance of functionalities. In addition, acridones were converted into several value-added acridones and acridines, highlighting the synthetic versatility and usefulness of the prepared acridone derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c03125DOI Listing

Publication Analysis

Top Keywords

vinyl malononitriles
8
acridones fused
8
fused derivatives
8
one-pot operation
8
base-promoted copperi-catalyzed
4
copperi-catalyzed tandem
4
tandem cyclization-csp-n
4
cyclization-csp-n coupling
4
coupling vinyl
4
malononitriles -nitrochalcones
4

Similar Publications

An efficient CsCO-promoted and copper(I)-catalyzed double cyclization of -nitrochalcones with vinyl malononitriles for the access to a variety of tri- and tetra-substituted acridones and their fused derivatives with a value-added CN group has been developed for the first time. This one-pot operation proceeds through a Michael-cyclization-aromatization, followed by regioselective -amination via nucleophilic aromatic substitution (SAr) reaction, resulting in two C═C bonds and a C-N bond for acridone ring synthesis. This economic strategy based on 100% carbon atoms ensures the successive formation of two rings in a one-pot operation, good to high yields, a wide range of substrates, and good tolerance of functionalities.

View Article and Find Full Text PDF

Manganese-Catalyzed Electrochemical Amination of Activated Alkenes.

Chem Asian J

January 2025

Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.

We have unveiled a new manganese-catalyzed electrochemical amination method to transform activated alkenes into a diverse array of vinyl amines harnessing sodium azide as the aminating reagent. The strategy claims notable versatility by accommodating a broad spectrum of substrates, demonstrating good compatibility with diverse functional groups, as well as delivering a moderate to good range of yields. The successful late-stage functionalization further underscores its practical utility.

View Article and Find Full Text PDF

Unusual Thermo-Enhanced Second Harmonic Generation in Organic Configurationally-Locked Polyene Crystals.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

To modulate nonlinear optical (NLO) effects of crystalline material holds great application potential in the photoelectronic and optical fields. Organic configurationally-locked polyene represents an exciting NLO family with large second harmonic generation (SHG) effects, whereas it is a huge blank to switch and modulate their NLO property through external stimuli. For the first time, here present unusual thermo-enhanced SHG activities are presented in a polyene-based NLO compound, 2-{3-[2-(4-pyrrolidinphenyl)vinyl]-5,5-dimethylcyclohex-2-enylidene}malononitrile (1), giving a record-high magnitude of SHG enhancement up to ≈170% during its isomorphic phase transition.

View Article and Find Full Text PDF

This work established a newly designed and synthesized carbazole N-phenyl π-conjugated vinyl malononitrile (CPM) fluorescent sensor, which showed typical and remarkable redshift emission properties with different polarity index solvents. Investigative probe CPM is colorimetric and fluorimetric ultrafast and ultrasensitive detection of hazardous hydrazine in an aqueous medium. Furthermore, CPM showed colorimetric and fluorometric responses to interference tests with other amines and high selectivity for detecting hydrazine without interference with other amines in colorimetric and fluorimetric methods.

View Article and Find Full Text PDF

Visible-light-induced organophotocatalyzed ring-opening followed by remote Giese addition of tertiary cycloalkanols with β-silylmethylene malonates has been developed under mild reaction conditions for the synthesis of organosilicon compounds, bearing a ketone group distally substituted with a silyl group with an additional dialkyl malonate functional handle in moderate to good yields (34-72%). The protocol also worked well with diverse Michael acceptors, such as alkylidene/benzylidene malonates, trifluoro methylidene malonate, benzylidene malononitrile, α-cyano-enone, and α-cyano vinyl sulfone, and delivered desired valuable distally functionalized ketones. To showcase the potential of the method, various synthetic transformations of the obtained product were also demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!